Chronotype-based High-intensity Interval Training: Effects on Cardiac Biomarkers and Oxidative Stress in Obese Adults

Ayyappan Jayavel, Meera Shivasekar, V.M. Vinodhini

Abstract


Background: Obesity increases the risk of chronic diseases like diabetes, heart disease, hypertension, and cancer due to inflammation, insulin resistance, and elevated homocysteine(HCY) levels. Regular physical activity improves cardiovascular health, with High-Intensity Interval Training (HIIT) emerging as an effective intervention. However, individual factors like chronotype influence responses to HIIT. This study investigates the impact of HIIT on obesity-related outcomes and explores how chronotype modulates these effects, addressing the need for personalized exercise strategies. Methods: This study employed a pre-test post-test experimental design involving 60 male and female volunteers. Participants were divided into chronotype-based exercise schedules (CBES) and non-chronotype-based exercise schedules (NCBES) groups. Exclusion criteria included coronary artery disease, type 2 diabetes, peripheral arterial disease, or hypertension. HIIT was conducted using a cycle ergometer for 20 minutes, three times a week, over 12 weeks. Anthropometric measurements and biochemical assays, including lipid profiles and cardiac markers, were conducted pre-and post-intervention. Results: Homocysteine levels significantly decreased from 20.45 ± 5.62 μmol/L to 18.22 ± 5.07 μmol/L (p < 0.001). Participants experienced significant reductions in weight (average loss of 3.87 kg) and BMI (average decrease of 1.38 units). Lipid profiles showed improvements, with notable reductions in total cholesterol, triglycerides, LDL, and VLDL cholesterol (p < 0.001). MDA levels, a marker of oxidative stress, increased significantly from 181.83 ± 6.57 nmol/mL to 250.68 ± 31.52 nmol/mL (p < 0.001). Both CBES and NCBES groups exhibited positive changes, although no significant differences were observed between them. Conclusion: HIIT effectively improves cardiovascular biomarkers and reduces body weight and BMI in overweight and obese individuals, regardless of the exercise program. However, it also increases oxidative stress markers, highlighting the need for balanced exercise protocols. The impact of chronotype on exercise outcomes warrants further investigation.

Keywords


High-intensity Interval Training, Homocysteine, Malondialdehyde, Body Composition Obesity

Full Text:

PDF

References


Adan, A., & Almirall, H. (1991). Horne & Östberg morningness-eveningness questionnaire: A reduced scale. Personality and Individual Differences, 12(3), 241–253. https://doi.org/10.1016/0191-8869(91)90110-W

alabaf yousefi, F., pouzesh jadidi, R., Bashiri, J., & Vakili, J. (2021). Effects of HIIT and Curcumin Supplementation on Rat Cardiac Fibrosis Signaling Pathway Following Myocardial Infraction. Research-in-Sport-Medicine-and-Technology, 19(22), 37–54.

Alam, S. F., Kumar, S., & Ganguly, P. (2019). Measurement of homocysteine: A historical perspective. Journal of Clinical Biochemistry and Nutrition, 65(3), 171. https://doi.org/10.3164/jcbn.19-49

Alfeel, A. H., Hussein, S. E. O., Yousif, T. Y. E., Babker, A. M. A., Altoum, A. E. A., Mohamed, A. N., Elzein, H. O., Ahmed, T., Saboor, M., Osman, H. A., Kumar, P., Ali, H., & Abdalhabib, E. K. (n.d.). Association between oxidative stress, antioxidant enzymes, and homocysteine in patients with polycystic ovary syndrome. Oxidative Stress.

Amaro-Gahete, F., Sanchez-Delgado, G., & Ruiz, J. (2018). Commentary: Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front. Physiol. https://doi.org/10.3389/FPHYS.2018.01460

Atakan, M. M., Guzel, Y., Shrestha, N., Kosar, S. N., Grgic, J., Astorino, T. A., Turnagol, H. H., & Pedisic, Z. (2022a). Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: A systematic review and meta-analysis. British Journal of Sports Medicine, 56(17), 988–996. https://doi.org/10.1136/bjsports-2021-105181

Atakan, M. M., Guzel, Y., Shrestha, N., Kosar, S. N., Grgic, J., Astorino, T. A., Turnagol, H. H., & Pedisic, Z. (2022b). Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: A systematic review and meta-analysis. British Journal of Sports Medicine, bjsports-2021-105181. https://doi.org/10.1136/bjsports-2021-105181

Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/IJERPH18137201

Beaulieu, K., Finlayson, G., & Quist, J. S. (2024). Chronotypical influence on eating behaviour and appetite control. The Proceedings of the Nutrition Society, 1–7. https://doi.org/10.1017/S0029665124007511

Bevan, R. J., Durand, M. F., Hickenbotham, P. T., Kitas, G. D., Patel, P. R., Podmore, I. D., Griffiths, H. R., Waller, H. L., & Lunec, J. (2003). Validation of a novel ELISA for measurement of MDA-LDL in human plasma. Free Radical Biology & Medicine, 35(5), 517–527. https://doi.org/10.1016/s0891-5849(03)00359-9

Bruggisser, F., Knaier, R., Roth, R., Wang, W., Qian, J., & Scheer, F. (2023). Best Time of Day for Strength and Endurance Training to Improve Health and Performance? A Systematic Review with Meta-analysis. Sports Medicine - Open. https://doi.org/10.1186/S40798-023-00577-5

de Matos, M. A., Vieira, D. V., Pinhal, K. C., Lopes, J. F., Dias-Peixoto, M. F., Pauli, J. R., de Castro Magalhães, F., Little, J. P., Rocha-Vieira, E., & Amorim, F. T. (2018). High-Intensity Interval Training Improves Markers of Oxidative Metabolism in Skeletal Muscle of Individuals With Obesity and Insulin Resistance. Frontiers in Physiology, 9, 1451. https://doi.org/10.3389/fphys.2018.01451

e Silva, A. de S., & da Mota, M. P. G. (2014). Effects of physical activity and training programs on plasma homocysteine levels: A systematic review. Amino Acids, 46(8), 1795–1804. https://doi.org/10.1007/s00726-014-1741-z

Fisher, G., Brown, A. W., Brown, M. B. B., Alcorn, A., Noles, C. D., Winwood, L., Resuehr, H., George, B. J., Jeansonne, M., & Allison, D. (2015). High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial. PloS One. https://doi.org/10.1371/JOURNAL.PONE.0138853

Gadde, K. M., Martin, C. K., Berthoud, H.-R., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011

Galan-Lopez, P., & Casuso, R. A. (2023). Metabolic Adaptations to Morning Versus Afternoon Training: A Systematic Review and Meta-analysis. Sports Medicine. https://doi.org/10.1007/S40279-023-01879-0

Homocysteine Studies Collaboration. (2002). Homocysteine and Risk of Ischemic Heart Disease and StrokeA Meta-analysis. JAMA, 288(16), 2015–2022. https://doi.org/10.1001/jama.288.16.2015

Keaney, J., Larson, M., Vasan, R., Wilson, P., Lipinska, I., Corey, D., Massaro, J., Sutherland, P., Vita, J., & Benjamin, E. (2003). Obesity and Systemic Oxidative Stress: Clinical Correlates of Oxidative Stress in The Framingham Study. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/01.ATV.0000058402.34138.11

König, D., Bissé, E., Deibert, P., Müller, H., Wieland, H., & Berg, A. (2003). Influence of Training Volume and Acute Physical Exercise on the Homocysteine Levels in Endurance-Trained Men: Interactions with Plasma Folate and Vitamin B12. Annals of Nutrition and Metabolism. https://doi.org/10.1159/000070032

Konukoğlu, D., Serin, O., Ercan, M., & Turhan, M. S. (2003). Plasma homocysteine levels in obese and non-obese subjects with or without hypertension; its relationship with oxidative stress and copper. Clinical Biochemistry, 36(5), 405–408. https://doi.org/10.1016/s0009-9120(03)00059-6

Lavie, L., & Lavie, P. (2004). Daily rhythms in plasma levels of homocysteine (No. 0). 2(0), Article 0. https://doi.org/10.1186/1740-3391-2-5

Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021). Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272

Malik, V., & Pundir, C. S. (2002a). Determination of total cholesterol in serum by cholesterol esterase and cholesterol oxidase immobilized and co-immobilized on to arylamine glass. Biotechnology and Applied Biochemistry, 35(3), 191–197.

Malik, V., & Pundir, C. S. (2002b). Determination of total cholesterol in serum by cholesterol esterase and cholesterol oxidase immobilized and co-immobilized on to arylamine glass. Biotechnology and Applied Biochemistry, 35(3), 191–197.

McClean, C., & Davison, G. W. (2022). Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants, 11(2), 256. https://doi.org/10.3390/antiox11020256

Ouerghi, N., Fradj, M. K. B., Duclos, M., Bouassida, A., Feki, M., Weiss, K., & Knechtle, B. (2022). Effects of High-Intensity Interval Training on Selected Adipokines and Cardiometabolic Risk Markers in Normal-Weight and Overweight/Obese Young Males-A Pre-Post Test Trial. Biology, 11(6), 853. https://doi.org/10.3390/biology11060853

Paul, B., Saradalekshmi, K. R., Alex, A. M., & Banerjee, M. (2014). Circadian rhythm of homocysteine is hCLOCK genotype dependent. Molecular Biology Reports, 41(6), 3597–3602. https://doi.org/10.1007/s11033-014-3223-5

Perna, A. F., Ingrosso, D., & De Santo, N. G. (2003). Homocysteine and oxidative stress. Amino Acids, 25(3–4), 409–417. https://doi.org/10.1007/s00726-003-0026-8

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Reljic, D., Frenk, F., Herrmann, H. J., Neurath, M. F., & Zopf, Y. (2020). Low-volume high-intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: A randomized-controlled trial sub-study. Journal of Translational Medicine, 18(1), 419. https://doi.org/10.1186/s12967-020-02592-6

Roenneberg, T., Pilz, L. K., Zerbini, G., & Winnebeck, E. C. (2019). Chronotype and Social Jetlag: A (Self-) Critical Review. Biology, 8(3), 54. https://doi.org/10.3390/biology8030054

Sawyer, B. J., Tucker, W. J., Bhammar, D., Ryder, J., Sweazea, K., & Gaesser, G. (2016). Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. Journal of Applied Physiology. https://doi.org/10.1152/JAPPLPHYSIOL.00024.2016

Shoelson, S. E., Herrero, L., & Naaz, A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology, 132(6), 2169–2180. https://doi.org/10.1053/j.gastro.2007.03.059

Steele, J., Plotkin, D. L., Every, D. W. V., Rosa, A., Zambrano, H., Mendelovits, B., Carrasquillo-Mercado, M., Grgic, J., & Schoenfeld, B. J. (2021). Slow and Steady, or Hard and Fast? A Systematic Review and Meta-Analysis of Studies Comparing Body Composition Changes between Interval Training and Moderate Intensity Continuous Training. https://doi.org/10.3390/SPORTS9110155

Su, L., Fu, J., Sun, S., Zhao, G., Cheng, W., Dou, C., & Quan, M. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PloS One. https://doi.org/10.1371/JOURNAL.PONE.0210644

Vincent, H. K., & Taylor, A. G. (2006). Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. International Journal of Obesity, 30(3), 400–418. https://doi.org/10.1038/sj.ijo.0803177

Wald, N. J., Watt, H. C., Law, M. R., Weir, D. G., McPartlin, J., & Scott, J. M. (1998). Homocysteine and ischemic heart disease: Results of a prospective study with implications regarding prevention. Archives of Internal Medicine, 158(8), 862–867. https://doi.org/10.1001/archinte.158.8.862

Wang, R., Bawa, K., Feng, V., Herrmann, N., Gallagher, D., Black, S. E., Ramirez, J., Graham, S. J., Oh, P. I., Andreazza, A. C., Kiss, A., Swardfager, W., Lanctôt, K. L., & Neuropsychopharmacology. (2021). The relationship between homocysteine, oxidative stress, and cognition in mild cognitive impairment. Alzheimer’s & Dementia, 17(S5), e052381. https://doi.org/10.1002/alz.052381

Wang, R. D. (n.d.). The Relationship between Homocysteine, Oxidative Stress, and Cognition in Mild Vascular Cognitive Impairment.

Welch, G. N., Upchurch, G. R., & Loscalzo, J. (1997). Homocysteine, Oxidative Stress, and Vascular Disease. Hospital Practice, 32(6), 81–92. https://doi.org/10.1080/21548331.1997.11443510

Wood, G., Murrell, A., van der Touw, T., & Smart, N. (2019). HIIT is not superior to MICT in altering blood lipids: A systematic review and meta-analysis. BMJ Open Sport & Exercise Medicine, 5(1), e000647. https://doi.org/10.1136/bmjsem-2019-000647

Yu, J. H., Yun, C.-H., Ahn, J. H., Suh, S., Cho, H. J., Lee, S. K., Yoo, H. J., Seo, J. A., Kim, S. G., Choi, K. M., Baik, S. H., Choi, D. S., Shin, C., & Kim, N. H. (2015). Evening Chronotype Is Associated With Metabolic Disorders and Body Composition in Middle-Aged Adults. The Journal of Clinical Endocrinology & Metabolism, 100(4), 1494–1502. https://doi.org/10.1210/jc.2014-3754




DOI: https://doi.org/10.7575/aiac.ijkss.v.13n.1p.18

Refbacks

  • There are currently no refbacks.




License URL: https://creativecommons.org/licenses/by/4.0/

2013-2025 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.