Interventions to Promote the Development of Motor Performance Skills in Primary School Aged Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis of Controlled Trials

Andrew Sortwell, Pedro Forte, Rodrigo Ramirez-Campillo, Kevin Trimble, Kylie Steel, Kate O’Brien, Henrique P. Neiva, Daniel A. Marinho, Ricardo Ferraz


Background: The development of proficiency in motor performance skills (MPS) builds the foundation for the complex movement skills required to participate in a range of sports and physical activities throughout the lifespan. Objective: To assess the efficacy of different intervention approaches on developing MPS proficiency in children with autism spectrum disorder (ASD) and examine the intervention factors that influence change. Method: Searches were completed in three databases (PubMed/MEDLINE, Scopus, Web of Science) up to March 2022. Only randomised controlled trials (RCTs) or controlled trials (CTs), that evaluated the effectiveness of interventions on overall MPS proficiency or specific MPS such as balance, running speed and agility, bilateral coordination, jumping, ball skills and push-ups in children (4–13 years old) were included. The DerSimonian and Laird random-effects model was used to compute the meta-analyses. The effect sizes were reported as Hedges’ g. Using a random-effects model, potential sources of heterogeneity were identified, including subgroup analyses (type of intervention), and single training factor analysis (total number of weeks, session frequency, total intervention time, total number of training sessions). In addition, a multivariate meta-regression calculation was performed for balance. The GRADE framework was applied to assess certainty of evidence. Results: Seventeen interventions (13 RCTs and 4 CTs) revealed significant differences among groups favouring the intervention group with moderate to very large effects. Significant (p < 0.05) small-to-large effects of interventions were evident on overall motor performance skills (ES = 2.43), ball skills (ES = 2.95), jumping (ES = 1.89), bilateral coordination (ES = 2.21), push-ups (ES = 1.92), balance (ES = 1.56), running speed and agility (ES = 1.31). Multivariate meta-regression for balance revealed that total sessions, total intervention time and session frequency predicted (p = 0.009, p<0.001, p = 0.036, respectively) the effects of interventions on change in balance performance. Conclusion: Structured interventions that explicitly teach traditional FMS or promote the development and learning of movement skills specifically associated with a type of physical activity or sport, effectively improve MPS in children with ASD. Education settings should implement ‘planned’ movement experiences or interventions as a strategy to promote MPS proficiency in children with ASD.


Education, Exercise, Intervention, Learning, Physical Education, Physical Literacy

Full Text:



Adesope, O. O., Trevisan, D. A., & Sundararajan, N. (2017). Rethinking the Use of Tests: A Meta-Analysis of Practice Testing. Review of Educational Research, 87(3), 659-701.

Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley interdisciplinary reviews. Cognitive science, 8(1-2), 10.1002/wcs.1430.

Allen, K. A., Bredero, B., Van Damme, T., Ulrich, D. A., & Simons, J. (2017). Test of Gross Motor Development-3 (TGMD-3) with the Use of Visual Supports for Children with Autism Spectrum Disorder: Validity and Reliability. Journal of Autism and Developmental Disorders, 47(3), 813-833.

Ament, K., Mejia, A., Buhlman, R., Erklin, S., Caffo, B., Mostofsky, S., & Wodka, E. (2015). Evidence for specificity of motor impairments in catching and balance in children with autism. Journal of Autism and Developmental Disorders, 45(3), 742-751.

Amonkar, N., Su, W.-C., Bhat, A. N., & Srinivasan, S. M. (2021). Effects of Creative Movement Therapies on Social Communication, Behavioral-Affective, Sensorimotor, Cognitive, and Functional Participation Skills of Individuals With Autism Spectrum Disorder: A Systematic Review [Systematic Review]. Frontiers in Psychiatry, 12.

Ansari, S., Hosseinkhanzadeh, A. A., AdibSaber, F., Shojaei, M., & Daneshfar, A. (2021). The Effects of Aquatic Versus Kata Techniques Training on Static and Dynamic Balance in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 51(9), 3180-3186.

Barnett, L., Stodden, D., E. Cohen, K., Smith, J., Lubans, D., Lenoir, M., Iivonen, S., Miller, A., Laukkanen, A., Dudley, D., Lander, N., Brown, H., & Morgan, P. (2016). Fundamental Movement Skills: An Important Focus. Journal of Teaching Physical Education, 35(3), 219 - 225.

Barnett, L. M., van Beurden, E., Morgan, P. J., Brooks, L. O., & Beard, J. R. (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. Jounral of Adolescent Health, 44(3), 252-259.

Behringer, M., Heede, A., Matthews, M., & Mester, J. (2011). Effects of Strength Training on Motor Performance Skills in Children and Adolescents: A Meta-Analysis. Pediatric Exercise Science, 23(2), 186-206.

Berkeley, S. L., Zittel, L. L., Pitney, L. V., & Nichols, S. E. (2001). Locomotor and Object Control Skills of Children Diagnosed with Autism. Adapted Physical Activity Quarterly, 18(4), 405-416.

Bishop, J. C., & Pangelinan, M. (2018). Motor skills intervention research of children with disabilities. Research in Developmental Disabilities, 74, 14-30.

Bremer, E., & Cairney, J. (2016). Fundamental Movement Skills and Health-Related Outcomes: A Narrative Review of Longitudinal and Intervention Studies Targeting Typically Developing Children. American Journal of Lifestyle Medicine, 12(2), 148-159.

Bremer, E., & Cairney, J. (2020). Adaptive Behavior Moderates Health-Related Pathways in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 50(2), 491-499.

Broder-Fingert, S., Brazauskas, K., Lindgren, K., Iannuzzi, D., & Van Cleave, J. (2014). Prevalence of overweight and obesity in a large clinical sample of children with autism. Academic Pediatrics, 14(4), 408-414.

Bruininks-Oseretsky, R. (1978). Test of motor proficiency: Examiner’s manual. Circle Pines, MN: American Guidance Service.

Busti Ceccarelli, S., Ferrante, C., Gazzola, E., Marzocchi, G. M., Nobile, M., Molteni, M., & Crippa, A. (2020). Fundamental Motor Skills Intervention for Children with Autism Spectrum Disorder: A 10-Year Narrative Review. Children (Basel), 7(11), 250.

Cai, K. L., Wang, J. G., Liu, Z. M., Zhu, L. N., Xiong, X., Klich, S., Maszczyk, A., & Chen, A. G. (2020). Mini-Basketball Training Program Improves Physical Fitness and Social Communication in Preschool Children with Autism Spectrum Disorders. Journal of Human Kinetics, 73(1), 267-278.

Case-Smith, J., Weaver, L. L., & Fristad, M. A. (2015). A systematic review of sensory processing interventions for children with autism spectrum disorders. Autism, 19(2), 133-148.

Case, L., & Yun, J. (2019). The Effect of Different Intervention Approaches on Gross Motor Outcomes of Children With Autism Spectrum Disorder: A Meta-Analysis. Adapt Physical Activity Quarterly, 36(4), 501-526.

Cashin, A. G., & McAuley, J. H. (2020). Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. Journal of Physiotherapy, 66(1), 59.

Chaput, J.-P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: summary of the evidence. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 141.

Chu, C. H., Tsai, C. L., Chen, F. C., Sit, C. H. P., Chen, P. L., & Pan, C. Y. (2020). The role of physical activity and body-related perceptions in motor skill competence of adolescents with autism spectrum disorder. Disability Rehabilitation, 42(10), 1373-1381.

Coffey, C., Sheehan, D., Faigenbaum, A. D., Healy, S., Lloyd, R. S., & Kinsella, S. (2021). Comparison of fitness levels between elementary school children with autism spectrum disorder and age-matched neurotypically developing children. Autism Research, 14(9), 2038-2046.

Croen, L. A., Zerbo, O., Qian, Y., Massolo, M. L., Rich, S., Sidney, S., & Kripke, C. (2015). The health status of adults on the autism spectrum. Autism, 19(7), 814-823.

Cuesta-Gómez, J. L., De la Fuente-Anuncibay R, R., Vidriales-Fernández, R., & Ortega-Camarero, M. T. (2022). The quality of life of people with ASD through physical activity and sports. Heliyon, 8(3), e09193.

de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother, 55(2), 129-133.

Dong, L., Shen, B., Pang, Y., Zhang, M., Xiang, Y., Xing, Y., Wright, M., Li, D., & Bo, J. (2021). FMS Effects of a Motor Program for Children With Autism Spectrum Disorders. Perceptual Motor Skills, 128(4), 1421-1442.

Drevon, D., Fursa, S. R., & Malcolm, A. L. (2017). Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav Modif, 41(2), 323-339.

Duncan, M. J., Hall, C., Eyre, E., Barnett, L. M., & James, R. S. (2021). Pre-schoolers fundamental movement skills predict BMI, physical activity, and sedentary behavior: A longitudinal study. Scandinavian Journal of Medicine & Science in Sports, 31 Suppl 1, 8-14.

Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463.

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629-634.

Ekman, R., Fletcher, A., Giota, J., Eriksson, A., Thomas, B., & Bååthe, F. (2022). A Flourishing Brain in the 21st Century: A Scoping Review of the Impact of Developing Good Habits for Mind, Brain, Well-Being, and Learning. Mind, Brain, and Education, 16(1), 13-23.

Elliott, L. K., Weiss, J. A., & Lloyd, M. (2021). Beyond the Motor Domain: Exploring the Secondary Effects of a Fundamental Motor Skill Intervention for Children With Autism Spectrum Disorder. Adapted Physical Activity Quarterly, 38(2), 195-214.

Faigenbaum, A. D., Myer, G. D., Farrell, A., Radler, T., Fabiano, M., Kang, J., Ratamess, N., Khoury, J., & Hewett, T. E. (2014). Integrative neuromuscular training and sex-specific fitness performance in 7-year-old children: an exploratory investigation. Journal of Athletic Training, 49(2), 145-153.

Felzer-Kim, I. T., & Hauck, J. L. (2020). How Much Instructional Time Is Necessary? Mid-intervention Results of Fundamental Movement Skills Training Within ABA Early Intervention Centers. Frontiers in Integrative Neuroscience, 14(24).

Fortuna, R. J., Robinson, L., Smith, T. H., Meccarello, J., Bullen, B., Nobis, K., & Davidson, P. W. (2016). Health Conditions and Functional Status in Adults with Autism: A Cross-Sectional Evaluation. Journal of General Internal Medicine, 31(1), 77-84.

Gandotra, A., Kotyuk, E., Szekely, A., Kasos, K., Csirmaz, L., & Cserjesi, R. (2020). Fundamental movement skills in children with autism spectrum disorder: A systematic review. Research in Autism Spectrum Disorders, 78.

García-Hermoso, A., Ramírez-Campillo, R., & Izquierdo, M. (2019). Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Med, 49(7), 1079-1094.

Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., & Baird, G. (2009). Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol, 51(4), 311-316.

Guyatt, G., Oxman, A. D., Akl, E. A., Kunz, R., Vist, G., Brozek, J., Norris, S., Falck-Ytter, Y., Glasziou, P., deBeer, H., Jaeschke, R., Rind, D., Meerpohl, J., Dahm, P., & Schünemann, H. J. (2011). GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology, 64(4), 383-394.

Hassani, F., Shahrbanian, S., Shahidi, S. H., & Sheikh, M. (2022). Playing games can improve physical performance in children with autism. International Journal of Developmental Disabilities, 68(2), 219-226.

Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539-1558.

Higgins JPT, T. J., Chandler J, Cumpston M, Li T, Page MJ, Welch VA. (2022). Cochrane Handbook for Systematic Reviews of Interventions version 6.3. Cochrane.

Hill, A. P., Zuckerman, K. E., & Fombonne, E. (2015). Obesity and Autism. Pediatrics, 136(6), 1051-1061.

Hilton, C., Wente, L., Lavesser, P., Ito, M., Reed, C., & Herzberg, G. (2007). Relationship between motor skill impairment and severity in children with Asperger Syndrome. Research in Autism Spectrum Disorders, 1(4), 339-349.

Holfelder, B., & Schott, N. (2014). Relationship of fundamental movement skills and physical activity in children and adolescents: A systematic review. Psychology of Sport and Exercise, 15(4), 382-391.

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine & Science in Sports & Exercise, 41(1), 3-12.

Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 5(13).

Huang, J., Du, C., Liu, J., & Tan, G. (2020). Meta-Analysis on Intervention Effects of Physical Activities on Children and Adolescents with Autism. International Journal Environmental Research and Public Health, 17(6).

Izawa, J., Pekny, S. E., Marko, M. K., Haswell, C. C., Shadmehr, R., & Mostofsky, S. H. (2012). Motor Learning Relies on Integrated Sensory Inputs in ADHD, but Over-Selectively on Proprioception in Autism Spectrum Conditions. Autism Research, 5(2), 124-136.

Janssen, I., & LeBlanc, A. G. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 7(40).

Ketcheson, L., Hauck, J., & Ulrich, D. (2017). The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialisation in young children with autism spectrum disorder: A pilot study. Autism, 21(4), 481-492.

Kim, Y., Todd, T., Fujii, T., Lim, J. C., Vrongistinos, K., & Jung, T. (2016). Effects of Taekwondo intervention on balance in children with autism spectrum disorder. Journal of Exercercise Rehabilitation, 12(4), 314-319.

Lai, S. K., Costigan, S. A., Morgan, P. J., Lubans, D. R., Stodden, D. F., Salmon, J., & Barnett, L. M. (2014). Do school-based interventions focusing on physical activity, fitness, or fundamental movement skill competency produce a sustained impact in these outcomes in children and adolescents? A systematic review of follow-up studies. Sports Medicine, 44(1), 67-79.

Lang, R., Koegel, L. K., Ashbaugh, K., Regester, A., Ence, W., & Smith, W. (2010). Physical exercise and individuals with autism spectrum disorders: A systematic review. Research in Autism Spectrum Disorders, 4(4), 565-576.

Larsen, M. N., Nielsen, C. M., Ørntoft, C. Ø., Randers, M. B., Manniche, V., Hansen, L., Hansen, P. R., Bangsbo, J., & Krustrup, P. (2017). Physical Fitness and Body Composition in 8–10-Year-Old Danish Children Are Associated With Sports Club Participation. The Journal of Strength & Conditioning Research, 31(12), 3425-3434.

Liang, X., Li, R., Wong, S. H. S., Sum, R. K. W., & Sit, C. H. P. (2020). Accelerometer-measured physical activity levels in children and adolescents with autism spectrum disorder: A systematic review. Preventive Medicine Reports, 19, 101147.

Logan, S. W., Robinson, L. E., Wilson, A. E., & Lucas, W. A. (2012). Getting the fundamentals of movement: a meta-analysis of the effectiveness of motor skill interventions in children. Child Care Health Development, 38(3), 305-315.

Lopez-Diaz, J. M., Felgueras Custodio, N., & Garrote Camarena, I. (2021). Football as an Alternative to Work on the Development of Social Skills in Children with Autism Spectrum Disorder with Level 1. Behavioral Science (Basel, Switzerland), 11(11), 159.

Lopez-Espejo, M. A., Nuñez, A. C., Moscoso, O. C., & Escobar, R. G. (2021). Clinical characteristics of children affected by autism spectrum disorder with and without generalised hypotonia. European Journal of Pediatrics, 180(10), 3243-3246.

Lourenco, C., Esteves, D., Corredeira, R., & Seabra, A. (2015). The effect of a trampoline-based training program on the muscle strength of the inferior limbs and motor proficiency in children with autism spectrum disorders. Journal of Physical Education and Sport, 15(3), 592-597.

Lourenco, C., Esteves, D., Corredeira, R., & Seabra, A. (2016). The Efficacy of a Trampoline Training Program on the Motor Proficiency of Children with Autism Spectrum Disorder. Brazilian Journal of Special Education, 22(1), 39-48.

Lucas, B. R., Elliott, E. J., Coggan, S., Pinto, R. Z., Jirikowic, T., McCoy, S. W., & Latimer, J. (2016). Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis. BMC Pediatrics, 16(1), 193.

MacDonald, M., Esposito, P., & Ulrich, D. (2011). The physical activity patterns of children with autism. BMC Research Notes, 4(1), 422.

MacNamara, Á., Collins, D., & Giblin, S. (2015). Just let them play? Deliberate preparation as the most appropriate foundation for lifelong physical activity [Opinion]. Frontiers in Psychology, 6, 1548.

Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Physical therapy, 83(8), 713-721.

Magill R. A. & Anderson D. I. (2017). Motor learning and control : Concepts and applications (Eleventh). McGraw-Hill Education.

Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Research, 14(1), 579.

Mitchell, J. (2019). Physical Inactivity in Childhood from Preschool to Adolescence. ACSM's Health & Fitness Journal, 23(5), 21-25.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The, P. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6(7), e1000097.

Moseley, A. M., Herbert, R. D., Sherrington, C., & Maher, C. G. (2002). Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). Australian Journal of Physiotherapy, 48(1), 43-49.

Najafabadi, M. G., Sheikh, M., Hemayattalab, R., Memari, A. H., Aderyani, M. R., & Hafizi, S. (2018). The effect of SPARK on social and motor skills of children with autism. Pediatrics and Neonatology, 59(5), 481-487.

Pan, C. Y., Chu, C. H., Tsai, C. L., Sung, M. C., Huang, C. Y., & Ma, W. Y. (2017). The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism, 21(2), 190-202.

Pan, C. Y., Tsai, C. L., Chen, F. C., Chow, B. C., Chen, C. C., & Chu, C. H. (2021). Physical and Sedentary Activity Patterns in Youths with Autism Spectrum Disorder. International Journal of Environmental Research and Public Health, 18(4), 1739.

Pan, C. Y., Tsai, C. L., & Chu, C. H. (2009). Fundamental movement skills in children diagnosed with autism spectrum disorders and attention deficit hyperactivity disorder. Journal of Autism and Developmental Disorders, 39(12), 1694-1705.

Paquet, A., Olliac, B., Bouvard, M. P., Golse, B., & Vaivre-Douret, L. (2016). The Semiology of Motor Disorders in Autism Spectrum Disorders as Highlighted from a Standardised Neuro-Psychomotor Assessment. Frontiers in Psychology, 7, 1292.

Poitras, V. J., Gray, C. E., Borghese, M. M., Carson, V., Chaput, J.-P., Janssen, I., Katzmarzyk, P. T., Pate, R. R., Gorber, S. C., Kho, M. E., Sampson, M., & Tremblay, M. S. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition, and Metabolism, 41(6 Suppl 3), S197–S239.

Rafiei, H., Sheikh, M., Najafabadi, M. G., Saghaei, B., Naghdi, N., & Dewey, D. (2021). The Effects of Physical Activity and Exergaming on Motor Skills and Executive Functions in Children with Autism Spectrum Disorder. Games for Health Journal, 10(1), 33-42.

Rostami Haji Abadi, M., Zheng, Y., Wharton, T., Dell, C., Vatanparast, H., Johnston, J., & Kontulainen, S. (2021). Children with Autism Spectrum Disorder Spent 30 Min Less Daily Time in Moderate-to-Vigorous Physical Activity than Typically Developing Peers: a Meta-Analysis of Cross-sectional Data. Review Journal of Autism and Developmental Disorders.

Sarabzadeh, M., Azari, B. B., & Helalizadeh, M. (2019). The effect of six weeks of Tai Chi Chuan training on the motor skills of children with Autism Spectrum Disorder. Journal of Bodywork and Movement Therapies, 23(2), 284-290.

Shi, L., & Lin, L. (2019). The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine (Baltimore), 98(23), e15987.

Skrede, T., Steene-Johannessen, J., Anderssen, S. A., Resaland, G. K., & Ekelund, U. (2019). The prospective association between objectively measured sedentary time, moderate-to-vigorous physical activity and cardiometabolic risk factors in youth: a systematic review and meta-analysis. Obesity Reviews, 20(1), 55-74.

Solum, M., Lorås, H., & Pedersen, A. V. (2020). A Golden Age for Motor Skill Learning? Learning of an Unfamiliar Motor Task in 10-Year-Olds, Young Adults, and Adults, When Starting From Similar Baselines [Original Research]. Frontiers in Psychology, 11, 538.

Sortwell, A., Newton, M., Marinho, D., Ferraz, R., & Perlman, D. (2021). The Effects of an Eight Week Plyometric-based Program on Motor Performance Skills and Muscular Power in 7-8-Year-Old Primary School Students. International Journal of Kinesiology and Sports Science, 9(4), 1-12.

Sortwell, A., Behringer, M., Granacher, U., Trimble, K., Forte, P., P. Neiva, H., Clemente-Suárez, V., Ramirez-Campillo, R., Konukman, F., Tufekcioglu, E., Filizn, B., Branquinho, L., Ferraz, R., Sadeghi, H., & Jaime Arroyo-Toledo, J. (2022). Advancing Sports Science and Physical Education Research Through a Shared Understanding of the Term Motor Performance Skills: A Scoping Review with Content Analysis. International Journal of Kinesiology and Sports Science, 10(3), 18-27.

Thelen, E., Ridley-Johnson, R., & Fisher, D. M. (1983). Shifting patterns of bilateral coordination and lateral dominance in the leg movements of young infants. Developmental Psychobiology, 16(1), 29-46.

Tremblay, M. S., Carson, V., Chaput, J.-P., Gorber, S. C., Dinh, T., Duggan, M., Faulkner, G., Gray, C. E., Gruber, R., Janson, K., Janssen, I., Katzmarzyk, P. T., Kho, M. E., Latimer-Cheung, A. E., LeBlanc, C., Okely, A. D., Olds, T., Pate, R. R., Phillips, A., Poitras, V. J., Rodenburg, S., Sampson, M., Saunders, T. J., Stone, J. A., Stratton, G., Weiss, S. K., & Zehr, L. (2016). Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Applied Physiology, Nutrition, and Metabolism, 41(6 (Suppl. 3)), S311-S327.

Tyler, K., MacDonald, M., & Menear, K. (2014). Physical activity and physical fitness of school-aged children and youth with autism spectrum disorders. Autism Research and Treatment, 2014, 312163.

Viechtbauer, W., & Cheung, M. W. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112–125.

Vlahov, E., Baghurst, T. M., & Mwavita, M. (2014). Preschool motor development predicting high school health-related physical fitness: a prospective study. Perceptual and Motor Skills, 119(1), 279-291.

Whyatt, C. P., & Craig, C. M. (2012). Motor skills in children aged 7-10 years, diagnosed with autism spectrum disorder. Journal of Autism and Developmental Disorders, 42(9), 1799-1809.

Xin, F., Chen, S.-T., Clark, C., Hong, J.-T., Liu, Y., & Cai, Y.-J. (2020). Relationship between Fundamental Movement Skills and Physical Activity in Preschool-Aged Children: A Systematic Review. International Journal of Environmental Research and Public Health, 17(10), 3566.

Yamato, T. P., Maher, C., Koes, B., & Moseley, A. (2017). The PEDro scale had acceptably high convergent validity, construct validity, and interrater reliability in evaluating methodological quality of pharmaceutical trials. Journal of Clinical Epidemiology, 86, 176-181.

Zamani Jam, A., Talab, R. H., Sheikh, M., Torabi, F., & Rafie, F. (2018). The effect of 16 weeks gymnastic training on social skills and neuropsychiatric functions of autistic children. Sport Sciences for Health, 14(1), 209-214.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2023 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the '' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.