Ipsilateral and Contralateral Torque Responses to Bilateral and Unilateral Maximal, Fatiguing, Isokinetic Leg Extensions

Tyler J. Neltner, John Paul V. Anders, Joshua L. Keller, Robert W. Smith, Terry J. Housh, Richard J. Schmidt, Glen O. Johnson

Abstract


Background: Few studies have compared performance fatigability (PF) for bilateral versus unilateral isokinetic tasks. Objectives: The purpose of this study was to examine: Mode-specific testing responses to isokinetic fatigue, differences in PF between bilateral and unilateral leg extensions, and the effects of fatiguing, unilateral, dynamic leg extensions on contralateral isokinetic peak torque (PT) and maximal voluntary isometric contraction (MVIC). Methods: Eight men (mean ± SD: age= 22.5 ± 2.5 yr.) completed pre- and post-testing for PT and MVIC following 50 bilateral, unilateral right or left leg maximal, isokinetic leg extensions at 180°·s-1, on three separate days. Fatigue-induced decreases in PT and MVIC were used to quantify PF. The data were analyzed with a 4-way repeated measures ANOVA, follow up, and post-hoc analyses. Results: The results indicated that there were no differences (p > 0.05) in PF for the bilateral versus unilateral fatiguing tasks, decreases in PT (p < 0.001 - 0.016; d = 0.54 - 2.58) and MVIC (p < 0.001 - 0.006; η2p = 0.682 - 0.962) for the exercised legs during unilateral fatigue, and a contralateral increase (p = 0.007) in PT following the right leg fatiguing task. Conclusion: The results indicated that PT was more sensitive to fatiguing isokinetic tasks than was MVIC. In addition, there was a facilitation of PT in the contralateral leg following unilateral right leg fatigue. The differences in PT and MVIC testing may be attributable to the timing and/or relative contributions of peripheral and central fatigue.

Keywords


Muscle Fatigue, Isometric Contraction, Muscle Strength, Torque, Physical Exertion

Full Text:

PDF

References


Aboodarda, S. J., Šambaher, N., & Behm, D. G. (2015). Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii. Scandinavian Journal of Medicine & Science in Sports, 26(11), 1301–1312. https://doi.org/10.1111/sms.12596

Amann, M., Venturelli, M., Ives, S. J., McDaniel, J., Layec, G., Rossman, M. J., & Richardson, R. S. (2013). Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. Journal of Applied Physiology, 115(3), 355–364. https://doi.org/10.1152/japplphysiol.00049.2013

Anders, J. P. V., Keller, J. L., Smith, C. M., Hill, E. C., Neltner, T. J., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2020a). Performance fatigability and neuromuscular responses for bilateral and unilateral leg extensions in men. Journal of Musculoskeletal & Neuronal Interactions, 20(3), 325–331.

Anders, J. P. V., Keller, J. L., Smith, C. M., Hill, E. C., Neltner, T. J., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2020b). Performance fatigability and neuromuscular responses for bilateral versus unilateral leg extensions in women. Journal of Electromyography and Kinesiology, 50, 102367. https://doi.org/10.1016/j.jelekin.2019.102367

Anders, J. P. V., Smith, C. M., Keller, J. L., Hill, E. C., Housh, T. J., Schmidt, R. J., & Johnson, G. O. (2019). Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions. Sports, 7(7), 175. https://doi.org/10.3390/sports7070175

Andrews, S. K., Horodyski, J. M., MacLeod, D. A., Whitten, J., & Behm, D. G. (2016). The Interaction of Fatigue and Potentiation Following an Acute Bout of Unilateral Squats. Journal of Sports Science & Medicine, 15(4), 625–632.

Ansdell, P., Brownstein, C. G., Škarabot, J., Hicks, K. M., Howatson, G., Thomas, K., Hunter, S. K., & Goodall, S. (2019). Sex differences in fatigability and recovery relative to the intensity–duration relationship. The Journal of Physiology, 597(23), 5577–5595. https://doi.org/10.1113/JP278699

Babault, N., Desbrosses, K., Fabre, M.-S., Michaut, A., & Pousson, M. (2006). Neuromuscular fatigue development during maximal concentric and isometric knee extensions. Journal of Applied Physiology, 100(3), 780–785. https://doi.org/10.1152/japplphysiol.00737.2005

Brownstein, C. G., Millet, G. Y., & Thomas, K. (2020). Neuromuscular responses to fatiguing locomotor exercise. Acta Physiologica. https://doi.org/10.1111/apha.13533

Byrne, C., Eston, R. G., & Edwards, R. H. T. (2001). Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scandinavian Journal of Medicine & Science in Sports, 11(3), 134–140. https://doi.org/10.1046/j.1524-4725.2001.110302.x

Camic, C. L. (2011). An assessment of the motor control strategies and effects of fatigue specific to isometric, concentric, and eccentric muscle actions [Ph.D., The University of Nebraska - Lincoln]. https://search.proquest.com/docview/862368443/abstract/680283F6236340FCPQ/1

Cicchetti, D., & Sparrow, S. A. (1981). Developing Criteria for Establishing Interrater Reliability of Specific Items: Applications to Assessment of Adaptive Behavior. American Journal of Mental Deficiency, 86, 127–137.

Di Lazzaro, V., Oliviero, A., Profice, P., Insola, A., Mazzone, P., Tonali, P., & Rothwell, J. C. (1999). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 124(4), 520–524. https://doi.org/10.1007/s002210050648

Enoka, R. M., & Duchateau, J. (2016). Translating Fatigue to Human Performance. Medicine and Science in Sports and Exercise, 48(11), 2228–2238. https://doi.org/10.1249/MSS.0000000000000929

Farthing, J. P., Chilibeck, P. D., & Binsted, G. (2005). Cross-Education of Arm Muscular Strength Is Unidirectional in Right-Handed Individuals. Medicine & Science in Sports & Exercise, 37(9), 1594–1600. https://doi.org/10.1249/01.mss.0000177588.74448.75

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146

Gandevia, S. C. (2001). Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiological Reviews, 81(4), 1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Hess, C. W., Mills, K. R., & Murray, N. M. F. (1986). Magnetic stimulation of the human brain: Facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neuroscience Letters, 71(2), 235–240. https://doi.org/10.1016/0304-3940(86)90565-3

Hill, E., Housh, T., Smith, C., Schmidt, R., & Johnson, G. (2016). Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports (Basel, Switzerland), 4(4). https://doi.org/10.3390/sports4040047

Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., & Hallett, M. (2011). Interhemispheric Plasticity in Humans. Medicine and Science in Sports and Exercise, 43(7), 1188–1199. https://doi.org/10.1249/MSS.0b013e31820a94b8

Houston, M. E., Froese, E. A., Valeriote, St. P., Green, H. J., & Ranney, D. A. (1983). Muscle performance, morphology and metabolic capacity during strength training and detraining: A one leg model. European Journal of Applied Physiology and Occupational Physiology, 51(1), 25–35. https://doi.org/10.1007/BF00952534

Hureau, T. J., Romer, L. M., & Amann, M. (2018). The “sensory tolerance limit”: A hypothetical construct determining exercise performance? European Journal of Sport Science, 18(1), 13–24. https://doi.org/10.1080/17461391.2016.1252428

Jenkins, N. D. M., Buckner, S. L., Bergstrom, H. C., Cochrane, K. C., Goldsmith, J. A., Housh, T. J., Johnson, G. O., Schmidt, R. J., & Cramer, J. T. (2014). Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Experimental Gerontology, 58, 47–50. https://doi.org/10.1016/j.exger.2014.07.007

Kawamoto, J.-E., Aboodarda, S. J., & Behm, D. G. (2014). Effect of Differing Intensities of Fatiguing Dynamic Contractions on Contralateral Homologous Muscle Performance. Journal of Sports Science & Medicine, 13(4), 836–845.

Keller, J. L., Housh, T. J., Hill, E. C., Smith, C. M., Schmidt, R. J., & Johnson, G. O. (2020). Are There Sex-Specific Neuromuscular or Force Responses to Fatiguing Isometric Muscle Actions Anchored to a High Perceptual Intensity? The Journal of Strength & Conditioning Research, Publish Ahead of Print. https://doi.org/10.1519/JSC.0000000000003394

Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology, 80(4), 409–416. https://doi.org/10.1212/WNL.0b013e31827f07be

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Marrelli, K., Cheng, A. J., Brophy, J. D., & Power, G. A. (2018). Perceived Versus Performance Fatigability in Patients With Rheumatoid Arthritis. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01395

Martin, P. G., & Rattey, J. (2007). Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflügers Archiv - European Journal of Physiology, 454(6), 957–969. https://doi.org/10.1007/s00424-007-0243-1

Matkowski, B., Place, N., Martin, A., & Lepers, R. (2011). Neuromuscular fatigue differs following unilateral vs bilateral sustained submaximal contractions. Scandinavian Journal of Medicine & Science in Sports, 21(2), 268–276. https://doi.org/10.1111/j.1600-0838.2009.01040.x

Muellbacher, W., Facchini, S., Boroojerdi, B., & Hallett, M. (2000). Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clinical Neurophysiology, 111(2), 344–349. https://doi.org/10.1016/S1388-2457(99)00243-6

Neyroud, D., Kayser, B., & Place, N. (2016). Are There Critical Fatigue Thresholds? Aggregated vs. Individual Data. Frontiers in Physiology, 7(376). https://doi.org/10.3389/fphys.2016.00376

Phillips, C. G., & Porter, R. (1964). The Pyramidal Projection to Motoneurones of Some Muscle Groups of the Baboon’s Forelimb. In J. C. Eccles & J. P. Schadé (Eds.), Progress in Brain Research (Vol. 12, pp. 222–245). Elsevier. https://doi.org/10.1016/S0079-6123(08)60625-1

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2011). Neuroscience (3rd Edition). Sinauer Associates is an imprint of Oxford University Press.

Rassier, D. E., & MacIntosh, B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Brazilian Journal of Medical and Biological Research, 33(5), 499–508. https://doi.org/10.1590/S0100-879X2000000500003

Rattey, J., Martin, P. G., Kay, D., Cannon, J., & Marino, F. E. (2006). Contralateral muscle fatigue in human quadriceps muscle: Evidence for a centrally mediated fatigue response and cross-over effect. Pflügers Archiv - European Journal of Physiology, 452(2), 199–207. https://doi.org/10.1007/s00424-005-0027-4

Regueme, S. C., Barthèlemy, J., & Nicol, C. (2007). Exhaustive stretch-shortening cycle exercise: No contralateral effects on muscle activity in maximal motor performances. Scandinavian Journal of Medicine & Science in Sports, 17(5), 547–555. https://doi.org/10.1111/j.1600-0838.2006.00614.x

Riebe, D., Ehrman, J., Liguori, G., & Magal, M. (2018). ACSM’s Guidelines for Exercise Testing and Prescription (10th ed.). Wolters Kluwer.

Rossman, M., Garten, R., Venturelli, M., Amann, M., & Richardson, R. (2014). The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306(12), R934-940. https://doi.org/10.1152/ajpregu.00043.2014

Rossman, M., Venturelli, M., McDaniel, J., Amann, M., & Richardson, R. (2012). Muscle mass and peripheral fatigue: A potential role for afferent feedback? Acta Physiologica (Oxford, England), 206(4), 242–250. https://doi.org/10.1111/j.1748-1716.2012.02471.x

Ruschel, C., Haupenthal, A., Jacomel, G. F., Fontana, H. de B., Santos, D. P. dos, Scoz, R. D., & Roesler, H. (2015). Validity and Reliability of an Instrumented Leg-Extension Machine for Measuring Isometric Muscle Strength of the Knee Extensors. Journal of Sport Rehabilitation, 24(2). https://doi.org/10.1123/jsr.2013-0122

Sleivert, G. G., & Wenger, H. A. (1994). Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Archives of Physical Medicine and Rehabilitation, 75(12), 1315–1321. https://doi.org/10.1016/0003-9993(94)90279-8

Stedman, A., Davey, N. J., & Ellaway, P. H. (1998). Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle & Nerve, 21(8), 1033–1039. https://doi.org/10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9

Strang, A. J., Berg, W. P., & Hieronymus, M. (2009). Fatigue-induced early onset of anticipatory postural adjustments in non-fatigued muscles: Support for a centrally mediated adaptation. Experimental Brain Research, 197(3), 245–254. https://doi.org/10.1007/s00221-009-1908-0

Takahashi, K., Maruyama, A., Hirakoba, K., Maeda, M., Etoh, S., Kawahira, K., & Rothwell, J. C. (2011). Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stimulation, 4(2), 90–96. https://doi.org/10.1016/j.brs.2010.07.001

Thomas, K., Goodall, S., & Howatson, G. (2018). Performance Fatigability Is Not Regulated to A Peripheral Critical Threshold. Exercise and Sport Sciences Reviews, 46(4), 240–246. https://doi.org/10.1249/JES.0000000000000162

Thompson, B. J., Conchola, E. C., & Stock, M. S. (2015). Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors. Age, 37(6). https://doi.org/10.1007/s11357-015-9845-2

Tillin, N. A., & Bishop, D. (2009). Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent Explosive Activities. Sports Medicine, 39(2), 147–166. https://doi.org/10.2165/00007256-200939020-00004

Todd, G., Petersen, N. T., Taylor, J. L., & Gandevia, S. C. (2003). The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Experimental Brain Research, 150(3), 308–313. https://doi.org/10.1007/s00221-003-1379-7

Weavil, J. C., & Amann, M. (2019). Neuromuscular fatigue during whole body exercise. Current Opinion in Physiology, 10, 128–136. https://doi.org/10.1016/j.cophys.2019.05.008

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research. https://doi.org/10.1519/15184.1

Zijdewind, I., & Kernell, D. (2001). Bilateral interactions during contractions of intrinsic hand muscles. Journal of Neurophysiology, 85(5), 1907–1913. https://doi.org/10.1152/jn.2001.85.5.1907




DOI: https://doi.org/10.7575/aiac.ijkss.v.8n.4p.25

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2023 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.