Biochemical and Structural Alterations in Skeletal Muscle Following ACL Injury: A Narrative Review

Trenton Reyes, Darryn S. Willoughby


Background: Anterior cruciate ligament (ACL) injuries are some of the most common knee injuries that occur in the US, accounting for around 200,000 documented cases per year. Varying levels of severity can determine whether surgery is required or if physical therapy will suffice. One of the most common complications for patients is that there is significant atrophy of the impacted limb. Yet, there has not been definitive proof explaining this mechanism. Objective: The primary goal for this review was to examine some of the biochemical differences that tend to occur within and surrounding an ACL injury and the mechanisms involved in skeletal muscle atrophy and regenerative capabilities. Outcome: Multiple studies have found a connection between time spent inactive from the injury and the percentage of retained muscle after exercising again. Among decreases in muscle mass and muscle volume changes, analyses have also revealed alterations in alpha-2 macroglobulin, myostatin, heat shock protein-72, mechano GF-C24E, synovial fluid, and histochemical alterations in collagen and cartilaginous states which all seem to be primary factors in regulating effectiveness and speed of recovery from ACL injury. Conclusion: the influx of various cytokines as a response to the initial injury in relation to inflammation change the chemical and physical environment of the knee, making recovery significantly more difficult and time-consuming. Timing of injury, surgery, and re-initiation of movement after surgery are very important factors that can minimize overall damage and reduce recovery time.


Anterior Cruciate Ligament, Collagen, Satellite Cells, Heat Shock Protein, Synovial Fluid, Musculoskeletal

Full Text:



Bigoni, M., Turati, M., Gandolla, M., Sacerdote, P., Piatti, M., Castelnuovo, A., … Torsello, A. (2016). Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid. Mediators of Inflammation, 2016(2016), 7.

Demirag, B., Sarisozen, B., Ozer, O., Kaplan, T., & Ozturk, C. (2005). Enhancement of Tendon-Bone Healing of Anterior Cruciate Ligament Grafts by Blockage of Matrix Metalloproteinases. The Journal of Bone & Joint Surgery, 87-A(11), 10.

Evans, S, Shaginaw, F, & Bartolozzi, A. (2014). ACL reconstruction - It's all about timing. International Journal of Sports Physical Therapy, 9(2), 268-273.

Fry, C. S., Johnson, D. L., Ireland, M. L., & Noehren, B. (2017). ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 35(9), 1876–1885.

Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., … Lynch, G. S. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394), 394–398.

Hauger, A. V., Reiman, M. P., Bjordal, J. M., Sheets, C., Ledbetter, L., & Goode, A. P. (2018). Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 26(2), 399–410.

Hong Li, Chen Chen, & Shiyi Chen. (2015). Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: Potential biochemical mediators of degenerative alteration and specific biochemical markers (Review). Biomedical Reports, 3(2), 147–151.

Hsieh, Y.-L., & Yang, C.-C. (2018). Early intervention of swimming exercises attenuate articular cartilage destruction in a rat model of anterior cruciate ligament and meniscus knee injuries. Life Sciences, 212, 267–274.

Kaplan, D. J., Cuellar, V. G., Jazrawi, L. M., & Strauss, E. J. (2017). Biomarker Changes in Anterior Cruciate Ligament–Deficient Knees Compared With Healthy Controls. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33(5), 1053–1061.

Larsson, S., Struglics, A., Lohmander, L. S., & Frobell, R. (2017). Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: An exploratory analysis in the KANON trial. Osteoarthritis and Cartilage, 25(9), 1443–1451.

Lattermann, C., Conley, C. E.-W., Johnson, D. L., Reinke, E. K., Huston, L. J., Huebner, J. L., … Jacobs, C. A. (2018). Select Biomarkers on the Day of Anterior Cruciate Ligament Reconstruction Predict Poor Patient-Reported Outcomes at 2-Year Follow-Up: A Pilot Study. BioMed Research International, 2018(2018), 9.

Macleod, T. D., Snyder-Mackler, L., & Buchanan, T. S. (2014). Differences in Neuromuscular Control and Quadriceps Morphology Between Potential Copers and Noncopers Following Anterior Cruciate Ligament Injury. The Journal of Orthopaedic and Sports Physical Therapy, 44(2), 76–84.

Mantashloo, Z., Letafatkar, A., & Moradi, M. (2019). Vertical ground reaction force and knee muscle activation asymmetries in patients with ACL reconstruction compared to healthy individuals. Knee Surgery, Sports Traumatology, Arthroscopy, 2019(1), 6.

Mooren, F. C., & Volker, K. (2005). Molecular and Cellular Exercise Physiology (1st ed.). Human Kinetics.

Moresi, V., Garcia-Alvarez, G., Pristerà, A., Rizzuto, E., Albertini, M. C., Rocchi, M., … Coletti, D. (2009). Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor. PLoS ONE, 4(5), e5570.

Neuman, P., Dahlberg, L. E., Englund, M., & Struglics, A. (2017). Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthritis and Cartilage, 25(4), 492–498.

Norte, G. E., Knaus, K. R., Kuenze, C., Handsfield, G. G., Meyer, C. H., Blemker, S. S., & Hart, J. M. (2018). MRI-Based Assessment of Lower-Extremity Muscle Volumes in Patients Before and After ACL Reconstruction. Journal of Sport Rehabilitation, 27(3), 201–212.

Ohno, M., Fujiya, H., Goto, K., Kurosaka, M., Ogura, Y., Yatabe, K., … Musha, H. (2017). Long Term Changes in Muscles around the Knee Joint after ACL Resection in Rats: Comparisons of ACL-Resected, Contralateral and Normal Limb. Journal of Sports Science & Medicine, 16(3), 429–437.

Okuyama, R., Honda, M., Fujiya, H., Goto, K., Sugiura, T., & Akema, T. (2003). Expression of heat shock protein 72 in rat quadriceps muscles following anterior cruciate ligament resection. Journal of Orthopaedic Science, 8(2), 213–217.

Pereira, M. G., Baptista, I. L., Carlassara, E. O. C., Moriscot, A. S., Aoki, M. S., & Miyabara, E. H. (2014). Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats. PLoS ONE, 9(1), 11.

Peter M. Tiidus, A. Russel Tupling, & Michael E. Houston. (2012). Biochemistry Primer for Exercise Science (4th edition). Human Kinetics.

Senf, S. M. (2013). Skeletal muscle heat shock protein 70: Diverse functions and therapeutic potential for wasting disorders. Frontiers in Physiology, 4(330), 6.

Song, Y., Yu, C., Wang, C., Ma, X., Xu, K., Zhong, J. L., … Yang, L. (2016). Mechano growth factor-C24E, a potential promoting biochemical factor for ligament tissue engineering. Biochemical Engineering Journal, 105(2016), 249–263.

Wang, S., Wei, X., Zhou, J., Zhang, J., Li, K., Chen, Q., … Wei, L. (2014). Identification of α2-Macroglobulin as a Master Inhibitor of Cartilage-Degrading Factors That Attenuates the Progression of Posttraumatic Osteoarthritis. Arthritis & Rheumatology, 66(7), 1843–1853.

Wurtzel, C. N., Gumucio, J. P., Grekin, J. A., Khouri, R. K., Russell, A. J., Bedi, A., & Mendias, C. L. (2017). Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. Journal of Orthopaedic Research, 35(11), 2499–2505.

Yoh, K., & Infantolino, B. W. (2017). Weekly Changes in Vastus Lateralis Volume Following ACL Injury. International Journal of Athletic Therapy & Training, 22(3), 38–43.

Zeng, L., Xiao, C. Z., Deng, Z. T., & Li, R. H. (2017). Chondroprotective Effects and Multitarget Mechanisms of Fu Yuan Capsule in a Rat Osteoarthritis Model. Evidence-Based Complementary & Alternative Medicine (ECAM), 2017, 1–11.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2023 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the '' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.