Hierarchical Triple Model of Hybrid Neural Machine Translation

Bat-Erdene Batsukh*

University of the Humanities, Ulaanbaatar 14200, Mongolia

Corresponding Author: Bat-Erdene Batsukh, E-mail: bbat-erdene@humanities.mn

INTRODUCTION

In today’s globalized world, translation plays a vital role in removing barriers to communication. The need for translation arises from the understanding, study, and expression of some kind of content prepared in a language other than one’s native language, no matter where one is in the world. Thanks to social media platforms, users are more likely to view content written in other users’ foreign languages. The need for translation is growing. Because professional translation is labor-intensive. Automatic translation, also known as machine translation, has played an important role in helping millions of users understand content written in a foreign language. Machine translation can be used not only by ordinary users for independent translation, but also to help professional translators translate faster. The new era of machine translation is a data-driven approach. To translate in this way, the neural network model is used to accept the original sentence as an entry and to reverse the target sentence. The first attempts at neural machine translation began in 2013, and by 2015, neural machine translation was recognized as a new paradigm. Compared to structures that take into account the structure of words and sentences, the translation of a neural machine does not require additional intermediate steps, such as word structure, sentence structure and grammar boundary, and produces direct results using an accustomed model. In addition, neural machine translation performs better than systems that take into account the structure of words and sentences. If there is plenty of data to learn, especially in the two languages ordered. The widespread use of neural machine translation has the advantage of allowing users to translate certain terms and translate uneducated data to a certain extent. In some cases, however, the structure and the grammar boundary of a sentence is often distorted. The paper is intended to address issues such as the control of neural machine translation, more accurate translation of unidentified data, the accuracy of sentence structure and grammar boundaries. To solve this problem, modern translation theory led to the hybrid model of machine translation. Our model is expansion of this hybrid model with a sentence and a grammar boundary. We named this model as hierarchical triple model (HTM).

ABSTRACT

For more than a decade, PMT and SMT models have dominated the field of machine translation, and neural machine translation has emerged as a new paradigm for machine translation by the 2015. Neural machine translation provides a simple modeling mechanism that is easy to use in practice and science. Thus, it does not require concepts such as word ranking, a key component of the statistical machine translation. While this simplicity may be seen as an advantage, on the other hand, the lack of careful spelling is to lose control of the translation. Even tough, the neural machine translation is more flexible in terms of translations that don’t exactly match the training data. This provides more opportunities for such models, but exempts translation from pre-determined restrictions. Failure to connect specific words can make it difficult to connect the target words you create to the original word. The widespread use of neural machine translation system has the advantage of allowing users to translate certain terms and translate uneducated data to a certain extent. In some cases, however, the structure and the grammar boundary of a sentence is often distorted. The paper is intended to address issues such as the control of neural machine translation, more accurate translation of unidentified data, the accuracy of sentence structure and grammar boundaries. To solve this problem, modern translation theory led to the hybrid model of machine translation. Our model is expansion of this hybrid model with a sentence and a grammar boundary. We named this model as hierarchical triple model (HTM).

Key words: English-Mongolian translation, Hybrid model expansion, Grammar boundary, Sentence structure Hierarchical triple model

LITERATURE REVIEW

Machine translation is the process of automatically translating text written in one native language into another. We can identify three different approaches to machine translation (Vauquois, 1968). First, the tendency to translate directly from the text into the target language. This approach focuses on translating one text to another, regardless of sentence
meaning, syntax, or semantics. The second method is the “transfer method”, which is a step-by-step translation between the text and the abstract representation of the target text. This abstract representation is obtained by analyzing the text. Text representation creates the final target text through a transfer step to create an abstract target representation. The translation of the text in this way takes place in the order of the analysis and translation of the text and the creation of the target text. The third method of machine translation is to translate the text into a non-linguistic representation between languages, and the target text is extracted from the abstract representation of all these languages. It can be divided into rule-based and data-based machine translation. Grammar-based methods focus on manually defined translation rules for a given bilingual. This method requires human knowledge and is usually expensive to obtain. On the other hand, data-based methods, such as statistical machine translation, do not require such human knowledge, but are based on data examples when modeling translations.

Statistical machine translation is a data-based approach developed in the late 1980s. Its main purpose is to develop a translation template that can be taught using a collection of texts and target texts. Statistical-based templates are used to translate text into the target language without the need for manually generated translation rules. Statistical machine translation often returns the most probable results based on trained words and phrases. Previous systems of machine translation based on statistics were word-based, and each translation step consisted of generating a single word. In the early 2000s, a system that considered word and sentence structure was proposed (Zens & Ney, 2008). These systems have been widely used for more than a decade as the latest machine translation systems. Later, neural network-based machine translation became the leading trend in machine translation. We will consider two different methods of machine translation: first, machine translation that takes into account phrase-based machine translation (PMT) (Koehn et al., 2003) and statistical machine translation (SMT) (Brown et al., 1990), and second, neural machine translation (NMT) (Kalchbrenner & Blunsom, 2013), (Tan et al., 2020). Statistical machine translation systems are based on the models proposed in (Koehn et al., 2003) and the approach discovered by (Vogel et al., 1996). These models vary in context. Simple models are based solely on the word being translated, but may include more complex concepts for modeling the number of words in one language and the number of words derived from a translation in another language. All of these models are word-based and generate one word per step. Later, a model approach to phrase was proposed (Och & Ney, 2000), which laid the foundation for a translation paradigm that takes into account phrase and sentence structure (Brown et al., 1990). These systems have been widely used as the most advanced machine translation systems for more than a decade, until the introduction of neural machine translation. Models that take into account word and sentence structure differ from word-based models in that they score a whole phrase at each step. For example, “Where are you going right now?” Let’s take the sentence Using Bayesian decision rules using the minimum error rate training (Och, 2003), each word is described as follows (see Figure 1).

Word correlation is the word-level relationship between words in the original and target order. Usually, parallel syllables are not marked at the word level. Therefore, the word correlation is calculated automatically. The basic idea is that the correspondence of the words T ⊆ {1,2..., K} × {1,2..., L} is the correlation of the text indices k ∈ {1,2..., K}, and the indexes of the target sentence are l ∈ {1,2..., L}. An example of word matching is shown in Figure 4. Word correlations can be introduced as a sequence of hidden variables (Brown et al., 1993) (Vogel et al., 1996). Using this method, it is possible to define the word and sentence structure in more detail and incorporate it into the translation template. Sentence endings do not need to be taken into account when determining sentence structure and scope. We define this range using an algorithm developed by Stanford University (H. Wang & Huang, 2003). Word-based models must model a long context to generate such a sentence, and the search must be flexible enough not to stop the partial assumptions that lead to such a translation (see Figure 2).

However, phrase-based systems that take into account word and sentence structure are sufficient to store such entries in the sentence table 1. During the search, all expressions can be assumed to be a single atomic unit (see Figure 3).

METHODO\n

The best translation is created by segmenting all possible translations and their key phrases. In practice, this type of search does not have an exact tag, and a similar search procedure is used to find it. For example, if the source sequence of sentences in a text of length K is M = m^K = m_1 m_2 _ _ _ m_K, then the corresponding MOSE format, or the sequence of sentences in the target language corresponding to the same length L, must be E = e_1^L = e_1 e_2 _ _ _ e_L. In our case, we want to translate from English to Mongolian, we get a (E, M) ranked pair. Based on this, h_L = h_1 _ _ _ h_L is the alignment path of the position of each word in the target language to the position of the words in the target language, the position of each word in the target language to the position of the words in the target language s_i^K = s_i s_i _ _ _ s_K, (W. Wang et al., 2017) and let g_i^K = g_i g_2 _ _ _ g_K be the sentence structure and grammar.
boundary. Our system training based on simplified version of alignment based neural machine translation (Alkhouli et al., 2016). Only key difference is in the search procedure we applied grammar and sentence boundary detection. Let A be the probability of the translation pattern, B the probability of the model of expression used in language modeling and BPE, and C the probability of the pattern of words, sentence structure, and sentence scope. Since we are looking for the best English sentence for a given Mongolian sentence, we need to find the best option for both A, B, and C (Equation 1).

$$P(A)P(B/A) = P(B)P(A/B)$$ (2)

Since the above formula is valid, consider it for any $P(A, A_2, \ldots A_n) = P(A/A_1, A_2, \ldots A_{n-1})P(A_1, A_2, \ldots A_n) \ldots$ (3)

If this is repeated until , the probability of our model is as follows.

$$P(A, A_2, \ldots A_n) = P(A/A_1, A_2, \ldots A_{n-1})P(A_1, A_2, \ldots A_n)$$ (4)

When modeling grammar and sentence boundary, the general relationship of sentences in Mongolian is first plotted. “Тэрээр 2008 онд ерөнхийлөгчөөр сонгогдсон.” Given the sentence, the graph looks like this (see Figure. 4).

For us, the UD, which combines Mongolian grammar and sentence boundaries, is inspired by Stanford’s method (Dozat et al., 2017), which studies neural network-based words and sentence structures and relationships. For example, “Тэрээр 2008 онд ерөнхийлөгчөөр сонгогдсон.” The Stanford dependency of the Mongolian language is as follows (see Figure. 5).

When learning grammar and sentence boundary in a total of 500 steps, sentence recognition loss was reduced to 0.002 (see Figure. 6).

By including this dependency in the search for neural translation model, we have become a gateway to better understanding of sentence structure and grammar boundary.

RESULTS AND DISCUSSION

An attempt was made to integrate neural network results with a model that takes into account word and sentence structure, and for the first time proposed a model of re-alignment by changing the position of words (W. Wang et al., 2017). In practice, this integrated model of neural machine translation uses phrases to train neural networks. The difference between our experiments is that in this study, we selected three hierarchical models, the basic model of which was obtained using OpenNMT. During the development phase, each sys-

Table 1. English-mongolian mixed bilingual corpus

<table>
<thead>
<tr>
<th>Corpus data</th>
<th>Mongolian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>train, dev, test</td>
<td>2,402,138 line</td>
<td>39,298,174</td>
</tr>
<tr>
<td>Sentence</td>
<td>2,402,138 line</td>
<td>43,170,480</td>
</tr>
<tr>
<td>Word</td>
<td>39,298,174</td>
<td>43,170,480</td>
</tr>
</tbody>
</table>
tem component can be trained on a separate training corps, but setting up the system on that data is too costly in terms of computation. Therefore, a separate development package (consisting of hundreds to thousands of original sentences and relevant reference translations) is used to optimize the log-linear design combination for optimal translation performance to avoid overloading. In our training, we created a local English-Mongolian mixed bilingual corpus by translating the United Nations Parallel Corpus (Ziemski et al., 2016), Wikimatrix (Schwenk et al., 2019), and OpenSubtitles (Lison & Tiedemann, 2016).

The average number of words in the original sentences was 15.919942984124976, the average number of characters was 112.4927664438929, the smallest line consisted of 2 characters with 1 word, and the line with the most words consisted of 2149 words with 2,039,369 indexes. In order to present the results of the study more clearly and in more detail, we have considered some statistical indicators. The probability of translation was calculated by randomly sampling sentences from a set of 2,400,000 sentences not included in the training package to check how the quality of the translation depends on the coherence of the training data and the hierarchy model. A translation test using a hierarchical triple model-based system resulted in a 95% confidence interval of 0.9514 mean, a standard deviation of 0.0233, and a standard error of 0.0007. The above experiments showed that a neural network-based hierarchical triple model translation quality was highly effective. To evaluate our model, we have generated sample paragraph that sampled from the evaluation package. The following results were obtained by comparing and evaluating the quality and speed of translation using these pre-prepared text that sampled as “Parents and family members have a significant influence on the child’s choice of courses in high school and future choices of education, training and career after completion of high school. Some parents are open-minded to their child’s choice while some of them do not pay attention to their child’s choice. Some parents do not talk to their child about his/her choice, but their child knows what he/she choose by understanding the parents’ actions and expressions. Sometimes, the parental influence has a positive result, but sometimes, it has a negative result. Everything changes over the time. Children will work and live in different economic and working conditions. Current labor market will change when the children grow up. When the child will have his/her own career, the future career opportunities will be more different than career opportunities we know. In below table 2, we have considered some significant ideas to help parents to advice their child on the career choice. These ideas are classified into two parts that parents can do and cannot do.”.

The above evaluation used the translations of 3 professional translators as reference translations. Previous three types of assessments including accuracy and BLEU (Papineni et al., 2002) and TER (Snover et al., 2006), have shown that the quality of our model translations has improved to some extent. In terms of speed, it is slower than the other models.

CONCLUSION

In recent times, the hybrid neural machine translation has become a new paradigm that will dominate the machine translation research and manufacturing market. In this sense, this type of translation model and systematic research have entered the field of computational linguistics. The usage of neural machine translations individually or in two stages reduces system output controls on systems that take into account word, sentence structure and grammar boundaries, so we have developed hierarchical triple model of neural
machine translation to improve the sentence structure and grammar boundaries. The results of the neural network were then staged in a three-step model that worked by correctly defining the sentence structure and grammar boundaries by linking it to a pattern that took into account word and sentence structure. The use of the triple model solves problems such as sentence aggregation and sentence ending misidentification. The extension of the hybrid model’s search algorithm was highly effective. We conclude that it is possible to use our hierarchical triple model in a practice. Although the model we have developed has been successful in implementation, some improvements need to be made to bring it into line with the standard system of neural machine translation.

REFERENCES

