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Abstract. The paper aims at incorporating intelligent modelling paradigm-the Takagi-Sugeno(TS) model
and a conventional pole placement control methods in achieving stability for a single area power system net-
work. Four different operating points describing four different local linear state models are used in obtaining
the TS fuzzy model, state estimation based on Ackermann’s principle was used to determine the state feed-
back matrix for the four selected operating points, the system in open loop and in closed loop is simulated at
varying parameter conditions. Results indicating effectiveness of the developed controller over other reported
control method are generated.
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1 Introduction

Fuzzy logic control is a soft computing control method.
It employs a number of statements or rules each ex-
pressed in IF-THEN format as a basis for implementing
a control law. The rules are representation of knowledge
collected from an expert concerning step by step control of
a given physical system. Two fuzzy modelling approaches
are Mamdani and Takagi-Sugeno (T–S) models. While in
the Mamdani modelling fuzzy functions are use in the
premise (input) and consequence (output) parts of a rule,
the T-S fuzzy model has static or dynamic model in the
consequence part. Many formulations of the Mamdani
fuzzy models used in the context of control are reported
in references [1–3]. The T–S fuzzy model has rule that has
static or dynamic equation in the rules’ output. The T–S
fuzzy model based method has some merits in that wide
range of complex non–linear systems can be represented
as a set of local linear models in the consequence part
of the rule. Numerous works on control and signal pro-
cessing have used various forms of T–S fuzzy model [4–6].
Specifically for power system control we found some suc-
cessful works reported in references [4,7,8].

In conventional pole placement control, a desire per-
formance is set by placing the system poles at a desired
locations in s–plane. Application of pole placement strat-
egy has also been reported within the frame work of T–S
fuzzy model control. Some works can be seen in refer-
ences [9,10].

∗Corresponding author: R. S. Shehu
�: +234 703 707 9913
B: rabiushehu69@gmail.com

Due to competitive market demand on the control of
industrial systems, the control problem become too com-
plex to handle, partly due to varying nature of the system
parameter conditions. Classical control method such as
pole placement technique suffers because of lack of ade-
quate math model necessary for developing effective con-
trollers. There is a need therefore to introduce a knowl-
edge base system that could reduce the need for explicit
math model. Therefore, we seek to introduce a T–S fuzzy
modeling frame work which carries with it, some form of
system knowledge into the classical pole placement con-
trol design, with the aim of achieving robust control sys-
tem performance even in the presence of varying system
parameter conditions.

In this paper, we proposed a method of modifying a pole
placement based control law using a T–S fuzzy model pa-
rameters. We shall present results that would shows the
effectiveness of the control scheme.

2 Mathematical Preliminaries

Consider a general non–linear system given as

ẋ(t)= f (x(t))+ g (x(t))u(t)+w(t) (1)

where x(t) ∈ Rn is state vector, u(t) ∈ Rm is input control
signal, w(t) ∈ Rp is external disturbance signal, f and
g are non–linear smooth functions. Detail discussion on
the T–S fuzzy modelling approaches are provided in refer-
ence [11]. Basically T–S fuzzy modelling system provides
a mapping space consisting of a vector Rn ×Rm ×Rp such
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that

sup
x(t),u(t),w(t)⊂Φ

‖ f (x(t),u(t),w(t))−Φ (x(t),u(t),w(t))‖ ≤ ε (2)

where ε is an arbitrary small positive number. To briefly
explain the T–S fuzzy concept, let

Σi = (A i,Bi,D i) (3)

be linear space, where A i, Bi and D i are parametric ma-
trices of the ith local linear model, with i = 1,2, · · · , q be-
ing an index of triplets, then a T–S fuzzy system mapping
function at an instant of time would yield the following.

φ (x(t),u(t),w(t))= A(µ)x(t)+B(µ)u(t)+D(µ)w(t) (4)

The argument µi in the right side of (4) is fuzzy function.
A local linear model as output in response to inputs in a
local ith sector of a domain is represented using a rule of
the form Rule i (Ri).

1 if (z1(t) is M i
1 && z2(t) is M i

2 && · · · zs(t) is M i
s)

2 then ẋ(t)= A i x(t)+Biu(t)+D iw(t)

where Ri denotes the ith fuzzy rule, where z(t) =
[z1(t), z2(t), · · · , zs(t)] is premise input variable, M i

j =
[M i

1, M i
2, · · · , M i

s] is fuzzy linguistic value quantifying
membership degree of an input. Many types of func-
tion shapes are used, popular one is the triangular shape
shown in Fig. 1.

M(z)

c

w z

Fig. 1. A triangular fuzzy membership function

Mathematically the shape is expressed as

M(zi)= max
(
0, 1+ |z j − c j|

0.5β j

)
, j = 1,2, · · · , q (5)

where c j, β j are centre and width of the triangular shape.
The overall T–S fuzzy model resulting from Ri after com-
bination and aggregation can be written as

ẋ(t)=
R∑

i=1
µi (z(t)) (A i x(t)+Biu(t)+D iw(t)) (6)

where

µi (z(t))= ςi (z(t))∑R
i=1ςi (z(t))

(7)

and

ςi (z(t))=
s∏
j

M i
j (z(t)) (8)

2.1 State Feedback Control law and Fuzzy Closed
Loop System

In order to evolve the fuzzy based pole–placement con-
troller, we recalled the concept the Parallel Distributed

Compensation (PDC) used in T–S fuzzy based control [12].
In PDC a jth control law written as

u j =−µ j (z(t))K j x(t), j = 1,2, · · · ,R (9)

is design to compensate an ith T–S fuzzy rule of Ri.
Where K j is state feedback gain, µ j is jth fuzzy scal-
ing factor as defined in (6) and R is number T–S fuzzy
rules. If the linear quadratic regulator (LQR) or pole
placement design can be use to determine K j the system
in (6) with (9) involved is written in a closed loop system
as (10).

ẋ(t)=
R∑

i=1

R∑
j=1

µiµ j (A i −BiK i) x(t) (10)

In this paper, we shall determine the gain in (10) using
fuzzy pole placement in the context of state estimation
technique.

2.2 Feedback Gain Design Through Pole–
Placement

Let the ith local linear model in Ri behave as define by
the characteristic equation

q(s) = s2 +5s+6
= 0

(11)

Based on Ackermann’s idea [13], we write the gain as

K j = q jα
(
A j

)
(12)

Where qi is jth last row of the jth controllability matrix
and

α
(
A j

)= An
j +an−1 An−1

j +·· ·+a0I2. (13)

Having specified the desired dynamics in (11), we could
use MATLAB command to generate the appropriate state
feedback gain for system in (10).

3 Application

To test the effectiveness of the control scheme, we con-
sider the problem of maintaining frequency stability in
power system network model shown in Fig. 2.

VE’

X’
d

X t

Xab

Xab

a b

∞

Fig. 2. Single area power system network

Describing the system in state space form

ẋ = Ax+Bu (14)
y = Cx (15)

where A is n×n system matrix, B is n× p input matrix,
C is m× n output matrix and y is system output. We
recalled the approximate parametric linear model of the
network reported in reference [14] as[

ẋ1

ẋ2

]
=

[
0 1

−ω2
n −2ζωn

][
x1

x2

]
+

[
0
1

]
∆PL (16)

y =
[
1 0
0 1

][
x1

x2

]
(17)
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The parameters ωn and ζ are

ωn =
√
π foPs

H
(18)

ζ= D
2

√
π fo

HPs
(19)

The meanings of the system variables and parameters
are given in Table 1.

Table 1. System variables and parameters description

Variable Description

x1 Rotor angle in rad
x2 Frequency in rad

sec
ωn Natural frequency in rad

sec
ζ Damping ratio
D Damping constant
H Per unit inertia constant
fo Operating frequency in Hz
∆PL Per unit input load deviation
Ps Synchronizing power coefficient

3.1 The System T–S Fuzzy Model

To set up the T–S fuzzy rule base, we first assume that
the inputs to the rule premises are the states (x1, x2). We
select four operating points −x0 =

{
x01, x02, x03, x04

}
to es-

tablish the required four local linear models in the out-
put or consequence of the T–S fuzzy rules. If we assign
two fuzzy linguistic values of positive small (PS) and pos-
itive (P) to each input with notations

x1 :
{
M1

1 , M2
1

}
(20)

x2 :
{
M1

2 , M2
2

}
(21)

we then formulate a total of four T–S fuzzy rules exclud-
ing the disturbance as follows.

1 if (x1 is M1
1 && x2 is M2

1)
2 then ẋ = A1x+B1u
3 if (x1 is M1

1 && x2 is M2
2)

4 then ẋ = A2x+B2u
5 if (x1 is M2

1 && x2 is M1
2)

6 then ẋ = A3x+B3u
7 if (x1 is M2

1 && x2 is M2
2)

8 then ẋ = A4x+B4u

The overall T-S fuzzy model would take the form of (6).

4 Simulation

To set up the closed loop system for numerical evalua-
tion, we state the following remarks.

1. The universe of discourse of the state is
X = [0.001,1].

2. Membership function is triangular expressed in (5).

In Table 2 are the states, centres of membership func-
tion shapes and operating points as in 2011, Shehu and
Dan-Isa proposed [15] here with slight modification in
range and notations. The parameters specifications are
given in Table 3.

Using the operating points we obtain the four distinct
state matrices A = {

A i
}

in (22), (23), (24) and (25); and
B = {

Bi
}

in (26) respectively.

Table 2. Fuzzy system set variables and parameters values

States CTMF OP

x1 = [ 1
10 1] M1

1 = [0 1
8

1
4 ]

M2
1 = [ 1

8
1
4

1
2 ]

x1
1 = 11

100 x2
1 = 1

4
x3

1 = 9
20 x4

1 = 1
2

x2 = [ 3
1000

9
1000 ] M1

2 = [0 1
400

1
200 ]

M2
2 = [ 1

500
1

200
1

100 ]
x1

2 = 1
1000 x2

2 = 1
200

x3
2 = 7

1000 x4
2 = 1

100

CTMF: Centres of Triangular Membership Functions
OP: Operating Points

Table 3. Power network parameter constants

V = 1 p.u. X = 13
20 p.u. fo = 50 Hz

D = 69
500 H = 8 89

100
MJ

MV A Eo = 1 7
20 p.u.∗

δo = 7π
75 rad cos θ = 4

5 Ps = 1 99
500 p.u.

∗ maximum generator electromagnetic field

A1 =
[

0 1
1000

−3 8647
10000

−3
1250

]
(22)

A2 =
[

0 1
200

−8 3917
5000

−61
5000

]
(23)

A3 =
[

0 7
1000

−15 8101
10000

−171
10000

]
(24)

A4 =
[

0 1
−17 1417

2500
−61
2500

]
(25)

B1 = B2 = B3 = B4 =
[
0
1

]
(26)

4.1 Simulation Results

We may evaluate the system performance in cases as
follows.

Case 1: Open–loop with nominal parameter values
(D = 0.138, Ps = 1.988 p.u.).

Case 2: Open–loop with damping reduced (D = 0.0138,
Ps = 1.988 p.u.).

Case 3: Open–loop with negative power coefficient
(D = 0.0138, Ps =−1.988 p.u.).

Case 4: Closed–loop with the designed controller
under worst parameter condition (D = 0.0138, Ps =
−1.988 p.u.).

Applying 1 p.u. load demand, we obtain the system re-
sponses in Fig. 3.

5 Discussion

To understand the capability of the designed controller
we first obtain results of the networks’ frequency when
in open loop condition at nominal and varied parameter
conditions. At nominal parameter values, the network
response of the rotor angle is shown in Fig. 3(a) and the
load frequency in the steady state settles at the pre-set
value of 50 Hz as shown in Fig. 3(b).
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(a)

Fig. 3. Open–loop network response of the (a) rotor angle and (b) frequency at nominal D and Ps; open–loop network response of the
(c) rotor angle and (d) frequency at varying parameter values of D = 0.0138 (D reduced to 10%) and Ps = 1.988 (nominal); open–loop
network response of the (e) rotor angle and (f) frequency at varying parameter values of D = 0.138 (nominal) and Ps = −1.988 (varied
– worst case); and closed–loop system response of the (g) rotor angle and (h) frequency at worst parameter settings of D = 0.0138 (D
reduced to 10%) and Ps =−1.988 (worst case).
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This performance was also observed when damping
is reduced however, with severe oscillation during the
transient phase of the rotor angle’s response as shown
in Fig. 3(c), and the response of the frequency is shown
in Fig. 3(d). At negative power coefficient the rotor angle
and frequency results are unbounded (unstable) as seen
in Fig. 3(e) and Fig. 3(f).

Unlike in the case of PDC in the frame work of Lin-
ear Matrix Inequality result reported by Shehu and
Dan-Isa [15], here the fuzzy pole placement based con-
troller even at the combine reduced damping and nega-
tive power coefficient parameter values it stabilizes the
power network, providing good transient and excellent
steady state performances (see Fig. 3(g) and Fig. 3(h)).

6 Conclusion

In the paper we presented a fuzzy pole placement based
controller design. We applied the designed controller for
the control of load frequency in a single machine and sin-
gle area power generation network. First we represent
the network with its equivalent T–S fuzzy model. Based
on the fuzzy model, we formulate a PDC design deter-
mining the state feedback gain using a conventional pole
placement technique. Simulation results obtained shows
that the controller stabilizes the power network despite
severe changes in the power networks’ parameters val-
ues.
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