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Abstract. Complex fuzzy sets have been developed recently and extends truth values to unit circle in complex
plane. Complex fuzzy logic then developed by employing complex fuzzy sets. In this paper, a novel adaptive
complex neuro fuzzy inference system based on complex fuzzy logic is proposed for function approximation.
The underlying procedure of this network and its learning rule are described. Afterwards, the performance
of this system is evaluated by two functions consisting of Sine wave and Sinc function.

Keywords: complex fuzzy logic (CFL), hybrid learning, complex fuzzy set (CFS), complex neural net-
works (CNN).

1 Introduction

Fuzzy set theory proposed by Zadeh [1] and conse-
quently fuzzy logic have been widely used for different
purposes. Recently, complex fuzzy set [2] has been pro-
posed as an extension to traditional fuzzy set theory. Ac-
cording to [2], complex fuzzy set extends truth values to
unit disk of complex plane while possible membership de-
gree of traditional fuzzy set is limited to real numbers in
the range of [0,1]. Therefore, complex fuzzy set is defined
mathematically as:{

S = (x,µS(x)) | x ∈U ,µA(x)= rS(x) · eiωS (x)} (1)

where S is the complex fuzzy set, U is universe of dis-
course and µA is the complex membership function to
characterize complex fuzzy set A. Each complex mem-
bership function is consisted of amplitude rS(x) bounded
in [0,1] and phase part ωS(x) which can range [0,2π].

Complex fuzzy set maintain a novel framework which
have all advantages of type–1 fuzzy set further to the ex-
tra properties and characteristics attributed to complex-
valued nature. This nature of complex membership func-
tions allow them to obtain "wave–like" properties and
therefore they can have constructive and destructive in-
terfere with each other [3]. Nevertheless, considering all
properties and interactions of complex fuzzy sets is very
difficult, if not impossible, for humans and even experts.
This leads to use machine learning architecture in order
to elicit rules and tune complex membership functions.

Chen et al. [4] proposed adaptive neurocomplex fuzzy
inferential system (ANCFIS) as the first realization of
complex fuzzy logic in machine learning. ANCFIS em-
ploys signature property [5] to reduce the network size.
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Moreover, complex membership functions are defined as
sine to mimic the Fourier theorem [3]. Nonetheless, this
system is univariate and only applied to time–series fore-
casting.

In this paper, we propose an adaptive complex neuro–
fuzzy inferential system (ACNFIS) to deal with func-
tion approximation problems. The proposed system is
based on well–known adaptive network fuzzy inference
system (ANFIS) [6] with modifications to employ complex
fuzzy sets. Moreover, we used the suggested approach
in [5] to build complex membership function based on two
separate real valued functions as amplitude and phase.

The rest of this paper is organized as follows: In sec-
tion 2 a brief review of complex fuzzy sets and their op-
erations presented. Section 3 describes the proposed AC-
NFIS architecture. Results are discussed in section 4. It
follows by conclusion and future work.

2 Complex Fuzzy Logic Review

Fuzzy logic suggested an alternative way for uncer-
tainty modeling. Fuzzy allows to use human knowledge
to solve vague and imprecise informations linguistically.
This gives the opportunity to use linguistic variables, if-
then rules and human reasoning to model systems with-
out precise qualitative analysis. Ramot et al. [2] proposed
complex fuzzy set that extends possible values of tradi-
tional fuzzy sets from real numbers to complex plane.
Complex fuzzy set S is characterized by a complex-valued
membership function µS(x) whose range is the unit disk
in complex plane. Thus, complex membership function
assign a complex number to any element x in the uni-
verse of discourse. This concept is different from fuzzy
complex numbers [7–10]. Fuzzy complex number is a type-
1 fuzzy set with complex–valued members. Equivalently,
fuzzy complex number is a real valued function which is
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defined on complex number set. The notion of complex
fuzzy set, however, employs complex–valued membership
function to map each element into [0,1]× [0,2π]. The ba-
sic operations introduced by Ramot et al. [5] are as fol-
lows:

1. Union: Let µA = rA(x) · e jωA (x) and µB = rB(x) · e jωB(x)

be complex membership functions where A and B
are complex fuzzy sets defined on universe of dis-
course U . The complex membership function of
A∪B is

µA∪B = (rA ⊕ rB) · e j(ωA∪ωb) (2)

where ⊕ represents any s–norm function which sat-
isfy the type–1 fuzzy union axioms. The phase part,
the function can be select from other possibilities.
The followings are mentioned in [5]:

Sum ωA∪B =ωA +ωB (3)
Min ωA∪B = min(ωA ,ωB) (4)
Max ωA∪B = max(ωA ,ωB) (5)

Winner Take All ωA∪B =
{
ωA rA > rB

ωB rB > rA
(6)

2. Intersection: Assume µA and µB are two complex
membership functions of two complex fuzzy sets A
and B. Similar to the union, the intersection is in-
troduced as:

µA∩B = (rA ? rB) · e j(ωA∩ωb) (7)

where ? can be selected as any t–norm that satisfy
the type-1 fuzzy intersection axioms. The possible
functions for the phase part are the same as intro-
duced in union section. Selection of this operator is
totally based on the application. In the rest of this
paper, for intersection we use algebraic product as
t–norm for magnitude and summation for the phase
part. These selections are made in order to resemble
the complex–valued production.

3. Complement: Suppose µA is complex membership
functions of complex fuzzy set A. The complement
operator mentioned in [2] is defined as:

µĀ = r Ā · e jωĀ

= (1− rA) · e jωĀ (8)

The complement operator breaks the complex mem-
bership function into amplitude and phase parts.
Traditional complement operator applies to the am-
plitude part, however, the complement of the phase
part is based on the interpretation of membership
phase. According to [2], membership phase of S̄ must
be the same as S̄ in order to satisfy the axioms.
Therefore, the complement operator does not apply
to the membership phase.

Complex fuzzy set is the backbone of complex fuzzy
logic. The latter is a natural extension of fuzzy logic that
benefits from advantages of complex fuzzy sets [5]. As a
result, complex fuzzy logic can deal the problems that are
difficult or impossible to be addressed with traditional
fuzzy logic.

3 Architecture of ACNFIS

In this section, we introduce the ACNFIS and it’s
underlying procedure. ACNFIS is a multilayer feed–

Fig. 1. ACNFIS architecture

forward complex–valued neural network whose structure
is given in Fig. 1. The architecture of ACNFIS is based
on well known ANFIS [6] in which the node functions are
modified to employ complex fuzzy logic. Each layer and
its node function is as follows.

Layer 0: This layer is pass the input vector to the next
layer without any modification.

Layer 1: This layer transforms the input value into
complex membership grade for each input. Thus, fuzzi-
fication of input data is utilized at this stage. The node
function of jth node can be written in terms of ampli-
tude (A) and phase (P) as:

O1
j =µ(x)= A(x) · eiP(x) = A(x)∠P(x) (9)

We selected two separate real valued functions as A(x)
and B(x) to represent amplitude and phase parts. This
type of selection is made based on Liouvilles theorem [11].
According to this theorem, fully complex–valued function
cannot be both analytic and bounded unless it is con-
stant. However, the amplitude of complex membership
function must be bounded in unit interval [0,1]. Select-
ing two separate real valued function gives the oppor-
tunity to build bounded complex membership function.
Nevertheless, other approaches can bound the complex–
valued grade of membership such as Elliot function that
has been utilized in [4]. Subsequently, in selection of func-
tion for phase part, there would be no restriction. Indeed,
a function that spread on whole range of [0,2π] is more
effective. To this end, we selected two Gaussian functions
to build the complex–valued membership functions as fol-
lows:

µ(x)= exp
(
−(

x− cA j

aA j
)2

)
∠

(
2πexp

(
−(

x− cP j

aP j
)2

))
(10)

where subscripts A and P indicate amplitude and phase
parameters. Fig. 2 is visual representation of a sam-
ple complex membership function of this family. Each
complex membership function has four nonlinear (an-
tecedent) parameters to be identified and fine tuned.
Therefore, the nodes at this layer are adaptive and the
antecedent parameters will be updated iteratively based
on mean squared error and gradient vector.

Layer 2: Nodes of this layer are static nodes. Each
node represent a specific rule and its output is the fir-
ing strength of the rule. So this layer may be interpreted
as rule base of complex fuzzy logic. Normally, we con-
sider all the possible rules at this stage. Also complex–
valued multiplication is selected as node functions since
it satisfies both amplitude and phase t–norm axioms (see
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Fig. 2. A sample complex membership function with parameter
set [cA ,aA , cP ,aP ] = [0,1,0,0.5]; (a) 3D visualisation and (b) 2D
visualisation: real (solid) and imaginary (dashed) parts

section 2). The output for this layer is:

O2
j = w j =

n∏
k=1

O1
k =

n∏
k=1

A1
k · ei

∑n
k=1 P1

k (11)

where j represent the index of the rule, k is the index of
antecedents and n is total number of inputs for the jth
rule.

Layer 3 : Normalized rule firing strengths are calcu-
lated at this layer. Output of each node is evaluated us-
ing:

O3
j = w j =

w j∑n
j=1 |w j|

(12)

We used summation of weight amplitudes in order to nor-
malize the weights. This leads to have a rotation invari-
ant operator. In addition, denominator might be zero if
we use summation of complex weights and will cause sin-
gularity at this stage which makes the system unreliable.

Layer 4: Takagi and Sugeno’s inferential system [12] is
implemented at this layer. Each node corresponds one
consequent rule of Takagi and Sugeno’s inferential sys-
tem and therefore has linear parameters to find. The

node function that we used is:

O4
j = |w j|

(
cos(∠w j) f j +sin(∠w j)g j

)
(13)

f j =
N0∑
k

(p j,kxk)+ r j (14)

g j =
N0∑
k

(q j,kxk)+ s j (15)

where |w j| and ∠w j are amplitude and phase of normal-
ized weights and {~p j, ~q j, r j, s j} is consequent parameter
set.

Layer 5: This is output layer which calculates the out-
put value of the system by calculating summation of all
its input values.

O5
1 =

∑
j

O4
j (16)

Aforementioned system is an adaptive network which
implements complex fuzzy logic. This system, as it men-
tioned, has two set of parameters: premise(nonlinear)
and consequent(linear) parameters. To find consequent
set of parameters, we employed famous least square es-
timation(LSE) [6]. Let vector ~X be the set of consequent
parameters. Based on the operations of layers four and
five, we can write the output as a linear combination of
consequent parameters(~X ). Thus, having 2 inputs and P
training data pairs leads us to (17) where A is the known
coefficient matrix (18) and B is the desired output vec-
tor (19).

AX = B (17)

A =


α11x1 α11x2 α11 · · · β21x1 β21x2 β21

α12x1 α12x2 α12 · · · β22x1 β22x2 β22
...

...
...

. . .
...

...
...

α1P x1 α1P x2 α1P · · · β2P x1 β2P x2 β2P


(18)

B =


T1

T2
...

TP

 (19)

where Tp is the target value for the pth training data
pair and αip and βip are representing |wip|cos(∠wip)
and |wip|sin(∠wip) for pth training data, respectively.
Thus, we utilized pseudo–inverse least square estimation
to find the best set of consequent parameters. The solu-
tion is given as:

X = (AT A)−1 ATB (20)

It has to be noted that during the forward pass, we iden-
tify consequent parameter set while premise parameters
are assumed as constants. When the consequent set of
parameters are identified, we use Levenberg–Marquardt
algorithm [13] to update premise parameters. The error
vector is defined:

e= [
e1, e2, · · · , eP

]
= [

O1 −T1, O2 −T2, · · · , OP −TP
]

(21)

doi:10.7575/aiac.ijaepr.v.1n.2p.5 7

http://dx.doi.org/10.7575/aiac.ijaepr.v.1n.2p.5


IJAEPR 1(2):5–9, 2013

where Oi and Ti are ACNFIS and desired output for i th
data pair, respectively. Accordingly, the squared error can
be written as dot product of error vector:

E= 1
2
〈e,e〉 = 1

2
eTe (22)

For the sake of simplicity, we added 1
2 in (22). According

to LM back-propagation, update parameters are based on
the following.

x(k+1)= x(k)+∆x (23)

where x is antecedent parameter vector and ∆x is the
update vector which is calculated based on the Jacobian
and Hessian matrices of error w.r.t. antecedent parame-
ters. So the update matrix becomes

∆x=−[
JTJ+µI

]−1 JTe (24)

where J is the Jacobian matrix of error w.r.t. antecedent
parameters and µ is LM coefficient. The Jacobian matrix
has the form

J= ∂e
∂x

=


∂e1
∂x1

∂e1
∂x2

· · · ∂e1
∂xn

∂e2
∂x1

∂e2
∂x2

· · · ∂e2
∂xn

...
...

. . .
...

∂eP
∂x1

∂eP
∂x2

· · · ∂eP
∂xn

 (25)

Value of µ changes adaptively based on the difference in
two consequent errors. If the error decreased, µ is di-
vided by factor β. However, if the error increased, µ is
multiplied by β where β is a constant greater than one.
In our design, we chose β= 10. at each iteration. During
training phase, the system uses mentioned hybrid learn-
ing algorithm iteratively to optimize all the antecedent
and consequent parameters.

4 Results and Discussion

We evaluate performance of the system using approx-
imation of Sine and Sinc functions. We chose input do-
main of [0,2π] for Sine function. Then, we extracted
41 data pairs uniformly which consisted of 21 training
data and 20 test data. ACNFIS with two rules has
been trained using training data and mean squared error
reached 1.4×10−7. Afterwards, we tested the trained sys-
tem using testing data and it gives mean squared error of
1.3×10−7. Fig. 3 shows the output and error of ACNFIS
for Sine testing data. Complex membership function pa-
rameters are given in Table 1.

Table 1. Complex membership functions parameters for Sine
approximation

aA cA aP cP

MF1 1.55 10.02 12.41 -0.37
MF2 2.53 20.04 4.00 -0.88

Same procedure has been done for Sinc function. We
extracted 81 data pairs from input domain [−2π,2π] uni-
formly. We used 41 data pairs as training data where
after 200 epochs, mean square error reached 2.76×10−4

and therefore training process stopped. Then, we tested
the system using other 40 data pairs which gives mean
squared error 2.52×10−4. Fig. 4 depicts ACNFIS output
and its error for Sinc function. Table 2 shows the values
of complex membership functions parameters. The per-
formance of ACNFIS is compared with ANFIS and feed-
forward neural network in Table 3. ACNFIS shows better
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Fig. 3. Approximation of Sine function; (a) test data (solid) ver-
sus ACNFIS output (dashed) and (b) testing error
performance compared to two other approaches while it
has fewer number of nonlinear and linear parameters as
well.
Table 2. Complex membership functions parameters for Sinc
wave approximation

aA cA aP cP

MF1 3.74 -1.98 1.44 -2.49
MF2 3.78 0.29 1.44 2.49

Table 3. Performance comparison for Sinc function approxima-
tion

Nonlinear/Linear parameters MSEtrn MSEchk

ACNFIS 8/8 2.76e-4 2.52e-4
ANFIS 10/10 3.3e-4 3.4e-4

Feedforward NN 9/9 – 5.32e-4

5 Conclusion

Adaptive complex neuro fuzzy inference system (AC-
NFIS) has been proposed in this paper. This system is
capable of learning various functions based on input–
output data and approximate them accurately. Underly-
ing procedure of ACNFIS network shows that its network
is equivalent to well–known ANFIS system; however, all
the node functions are modified to utilize complex fuzzy
logic. Moreover, closed form learning rule for ACNFIS
is derived to optimize the parameters of ACNFIS in for-
ward and backward passes. The performance of this sys-
tem evaluated by Sine and Sinc functions which shows
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Fig. 4. Approximation of Sinc function; (a) test data (solid) ver-
sus ACNFIS output (dashed) and (b) testing error
capability of proposed system for approximating nonlin-
ear functions.

The future works can be concentrated on interpretation
of complex fuzzy sets and complex valued grade of mem-
berships. Furthermore, various structures have been de-
veloped for traditional fuzzy sets which can be modified
to utilize complex fuzzy logic.
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