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Abstract. Early fault detection of the induction machine is necessary in order to guarantee its stable
and high performance. To evaluate the motor’s health and detect existence of any failure in it, any motor
parameter is first measured using condition monitoring techniques. The raw signal acquired is then interpret
applying signal processing and data analysis procedures. Wavelet analysis of the motor current has been
considered as an effective fault detection method. However, there are different types of the wavelet function
that can be used for signal decomposition. This paper intends to investigate the ability of different types
of wavelet functions for early broken rotor bar detection. Different harmonic components introduced by
this fault such as maximum wavelet coefficient, left and right gradients of the maximum coefficient, were
extracted and used as a characteristic signature for fault detection. The results indicate that the reliability
of the fault detection depends on the type of wavelet function applied for decomposition of the signal.

Keywords: induction machine, fault, broken rotor bar, current signature, signal processing, wavelet anal-
ysis.

1 Introduction

A wide variety of types for squirrel cage induction ma-
chines (SCIMs) facilitate industrial tasks and produc-
tions. In industrial area, SCIMs are subjected to elec-
trical, mechanical and environmental stresses that cause
broken rotor bar (BRB) occurs, although SCIMs have
rugged structure. The presence of BRB brings about sec-
ondary malfunctions that reduces the efficiency of the
motor and hence increase the operational cost [1]. Accord-
ingly, early detection of rotor failures, specially BRB, is
crucial [2]. Any problem or irregularity in the machine
can be detected at an early stage by applying a suit-
able condition monitoring accompanied with an effective
signal processing method. Several condition monitoring
techniques for SCIMs fault detection have been reported
and developed [2,3]. Among various condition monitoring
techniques, motor current signature analysis has been
widely employed for BRB detection [4–7]. However, the
fault detection will fail if an effective signal processing
method is not applied. A raw signal measured by a suit-
able sensor goes through a signal processing to generate
parametric features associated with the fault under ob-
servation. These features, generally known as “fault sig-
nature”, are sensitive to the presence of the failure in mo-
tor. Fundamentally, the main aspects for the accurate de-
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tection and extraction of these features are based on sig-
nal processing. The technique applied to the signal must
have high sensitivity to the features. It must be able to
determinate the relationship between the fault signature
and its severity as well [8].

Recently, wavelet analysis that allows simultaneous
time and frequency decomposition of a signal has drawn
the great attention. Nevertheless, the results of anal-
ysis depend on the type of wavelet function applied for
signal decomposition. Besides that, various fault signa-
tures can be extracted by applying wavelet decomposition
to the raw current signal. The objective of this research
is to examine using different types of wavelet functions
in wavelet decomposition of the stator current signal. A
variety of fault features are extracted and investigated
for early detection of BRB.

2 Motor Current Signature Analysis

The current drawn by a healthy induction motor con-
tains a single component in the spectrum of stator cur-
rent. Existence of any asymmetry in induction motor
generates extra component in the spectrum which is cor-
responding to the fault. For example, when a rotor
breaks, current can not flow through it, and thus no mag-
netic flux is generated around that bar. Therefore an
asymmetry is generated in the magnetic field of rotor by
producing a non–zero backward rotating field. This phe-
nomenon can be observed in the stator spectrum at the
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frequency corresponding to twice of the slip frequency,
as [9,10].

fb = (1±2k s) fs (1)

where fb is the frequency of the current related to BRB
and/or end–ring fault; s is the slip; k is a constant value
and f is the supply frequency.

Frequency domain analysis, based on Fourier trans-
form, is the most common signal processing technique
used for fb extraction. However, there are some inconsis-
tencies regarding the ability of Fourier based analysis for
early fault detection [11,12], and therefore advanced signal
processing techniques were proposed for more accurate
and reliable fault detection. These techniques, such as
wavelet transform analysis, are based on simultaneous
time and frequency analysis of the signal. Wavelet trans-
form analysis is classified to continuous and discrete.
Continuous wavelet transform (CWT) is a sum over all
time of the signal multiplied by scaled, shifted versions
of the wavelet function. In this procedure, the wavelet
coefficient at all scales is calculated that produces a lot
of data and obviously it takes a long time [13]. Discrete
wavelet transform analyses the signals with a smaller
set of scales and specific number of translations at each
scale. Mallat [14] introduced a practical version of discrete
wavelet transform, called wavelet multi–resolution anal-
ysis. This algorithm is based on the fact that, one signal
is decomposed into series of small waves belonging to a
wavelet family. A discrete signal f [t] could be decom-
posed as

f [t]=
∑
k

Am0,nφm0,n [t]+
m−1∑

m=m0

∑
n

Dm,nψm,n [t] (2)

where φ is the scaling functions, deduced by father
wavelet and ψ is the wavelet functions, deduced by
mother wavelet, A is approximate coefficients and D is
detail coefficients. The multi–resolution analysis com-
monly uses discrete dyadic wavelet, in which scales and
positions are based on powers of two. In this approach,
the scaling function is represented by the following math-
ematical expression:

φmo ,n [t]= 2
m0
2 φ (2m0 t−n) (3)

i.e. φm0,n is the scaling function at a scale of 2m0 shifted
by n. Wavelet function is also defined as

ψm,n [t]= 2
m
2 ψ (2mt−n) (4)

i.e. ψm,n is the mother wavelet at a scale of 2m shifted by
n.

Generally, approximate coefficients Am0,n are obtained
through the inner product of the original signal and the
scaling function.

Am0,n =
∫ ∞

−∞
f (t)φm0,n (t)dt (5)

The approximate coefficients decomposed from a dis-
cretized signal can be expressed as

Am+1,n =
N∑

n=0
Am,n

∫
φm,n (t)φm+1,n (t)dt

=∑
Am,n g [n]

(6)

In dyadic approach, the approximation coefficients Am0,n
are at a scale of 2m0 . The filter, g[n], is a low–pass filter.

Similarly the detail coefficients Dm,n can be generally ob-
tained through the inner product of the signal and the
complex conjugate of the wavelet function.

Dm,n =
∫ ∞

−∞
f (t)ψ∗

m,n (t)dt (7)

The detail coefficients decomposed from a discretized sig-
nal can be expressed as

Dm+1,n =
N∑

n=0
Am,n

∫
φm,n (t)ψm+1,n (t)dt

=∑
n

Am,nh [n]
(8)

Dm,n are the detail coefficients at a scale of 2m0 . The fil-
ter, h[n] is a high–pass filter. The multi–resolution anal-
ysis utilizes discrete dyadic wavelet and extract the ap-
proximations of the original signal at different levels of
resolution. An approximation is a low resolution rep-
resentation of the original signal. The approximation
at a resolution 2−m can be split into an approximation
at a coarser resolution 2−(m+1) and the detail. The de-
tail represents the high frequency contents of the signal.
The approximations and details can be determined us-
ing low and high pass filters. In the multi–resolution
analysis, the approximations are split successively, while
the details are never analysed further. The decomposi-
tion process can be iterated, with successive approxima-
tions being decomposed in turn, hence one signal is bro-
ken down into many lower resolution components. This
process is called the wavelet decomposition tree as shown
in Fig. 1 [15].

Fig. 1. Dyadic Wavelet Decomposition Algorithm

Wavelet transform analysis though is proposed as one
of the best technique for fault detection, it has some lim-
itation that should be taken into account. For instance,
the type of wavelet function determines the result of sig-
nal decomposition and various features can be extracted
from decomposed signal. Therefore, a comparative study
that concentrates on the outcomes of different wavelet
functions for early fault detection is essential. This study
intends to investigate the effects of the wavelet function
and characteristic feature for early BRB detection using
wavelet analysis of stator current spectrum.
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Fig. 2. a) Experimental Setup, b) One broken rotor bar, c) Torque
and speed sensor

3 Case study

To examine the reliability of wavelet transform anal-
ysis for early detection of BRB, two motors, one motor
with no broken bar and the other with one broken bar,
were observed under different levels of load (35%, 50%
and 80% full load). The induction machine was coupled
to an generator acting as a load. Experimental data in-
cluding torque, speedcurrent and was acquired through
the appropriate sensors. Fig. 2 demonstrates the experi-
mental setup used in this study. The main characteristics
of the test motor was star connection, power was 750 W,
voltage was 415 V, six poles, primary current was 2.2 A,
speed was 1000 rpm and the number of 28 rotor bars.

Fig. 3. Steps to find the suitable Wavelet function

A bar breakage in the rotor was forced by drilling it
artificially in the laboratory. For the test motor, current
signal was measured using a board comprised of Hall Ef-
fect current sensors, LEM–LA–25P. Data was acquired
using a system bought from National Instrument com-
pany (SCXI 1125&1140 and PCI 6052E) and then was
sent to a PC for analysis in MATLAB environment. The
stator current was sampled at 20 kHz and the capturing
time was 0.2 s. Motor speed and torque were also ob-
served to ensure that the test motor works in a similar
condition for each test.

Before data analysis, the raw current signal was
re–sampled by synchronizing the starting origin with
phase 0. This preprocessing of the raw current signal is
critical since the unsynchronized current phase will give
inaccurate detection results [12,16]. The total re–sampled
cycles of the signals were five cycles, i.e. about 2400 sam-
pled data were used for analysis.

Fig. 4. The flow chart diagram applied in this study for broken
rotor bar detection

Discrete wavelet transform provides a set of decom-
posed signals in independent frequency bands that de-
pends upon the level of decomposition. Therefore, to ob-
tain a signal that encompasses frequencies of interest,
the level of decomposition first was determined. The sta-
tor current signal was decomposed at 11 levels that the
detail of the 8th level was used for analysis, since it en-
compasses the frequency bandwidth between 39.06 and
78.12 Hz (fundamental frequency is 50Hz). Fault char-
acteristic features were extracted from the signal corre-
sponds to detail of the 8th decomposition level.

Fig. 5. Wavelet coefficients of the 8th detail for healthy and
faulty motors using Biorthogonal 6.8 at different levels of loads

In the following step, all wavelet functions provided
by wavelet tool box in MATLAB ware examined to find
the suitable Wavelet function, as depicted in Fig. 3. The
wavelet functions that generate a decomposed signal
with higher energy value in determined level of decom-
position were selected for the fault detection.

Three features, including the maximum coefficient
value and its gradients, were extracted from wavelet de-
composition of current signal using the six wavelet func-
tions selected in the previous step. Each test was re-
peated 10 times and the average value of the features
were calculated and used for further investigation. Fig. 4
depicts the procedure used for wavelet analysis of current
signal.

20 doi:10.7575/aiac.ijaepr.v.1n.1p.18

http://dx.doi.org/10.7575/aiac.ijaepr.v.1n.1p.18


International Journal of Applied Electronics in Physics & Robotics

Table 1. Characteristic features of the 8th detail decomposition
for healthy motor under different levels of load when various
types of wavelet function were used

Feature Load (%) Bior 6.8 Coiflet 2 Coiflet 5 Daub 1 Daub 6 Daub 10

Left gradient
35 57.23 55.13 30.55 40.45 38.00 53.81
50 57.99 55.84 30.39 41.15 38.16 54.11
80 60.94 58.67 31.72 43.42 40.16 56.84

Peak value
35 27.56 26.89 26.92 23.03 29.25 32.61
50 28.10 27.40 27.09 23.43 29.37 32.91
80 29.51 28.77 28.43 24.62 30.89 34.49

Right gradient
35 -32.25 -33.03 -58.92 -34.26 -57.15 -52.25
50 -32.69 -33.46 -59.47 -34.97 -57.64 -53.06
80 -34.07 -34.88 -62.48 -36.74 -60.47 -55.61

Table 2. Characteristic features of the 8th detail decomposition
for faulty motor under different levels of load when various types
of wavelet function were used

Feature Load (%) Bior 6.8 Coiflet 2 Coiflet 5 Daub 1 Daub 6 Daub 10

Left gradient
35 57.68 55.42 28.63 40.61 36.38 52.58
50 58.34 56.18 29.54 41.26 37.57 53.57
80 63.59 61.15 34.53 45.22 42.75 59.83

Peak value
35 28.75 27.89 26.31 23.30 28.64 32.45
50 28.86 28.13 26.89 23.57 29.15 32.77
80 30.66 29.88 30.38 25.64 32.34 36.31

Right gradient
35 -34.23 -34.81 -58.68 -36.01 -57.13 -53.79
50 -34.98 -34.93 -59.44 -36.05 -57.68 -53.92
80 -35.44 -36.25 -65.73 -38.25 -63.52 -58.56

As an example, Fig. 5 illustrates the wavelet coeffi-
cients of the 8th detail for healthy and faulty motor us-
ing Biorthogonal 6.8 at different levels of load. Wavelet
analysis using Biorthogonal 6.8 generates a set of 26 co-
efficients for each case. Fig. 5 shows that for all cases,
the 16th coefficient has the maximum value. Therefore,
the 16th coefficient and its gradients (left and right gra-
dient) were selected as features for BRB detection. The
left gradient corresponds to the slope of line drawn from
16th coefficient to the previous one (15th). The right gra-
dient is the line slope between maximum coefficient (16th

coefficient) and the 17th coefficient.

In a similar way, other types of wavelet function such
as Coiflet 2, Coiflet 5, Daubechies 1, Daubechies 6 and
Daubechies 10 were used for signal analysis. The number
of wavelet coefficients depends upon the type of wavelet
function used for analysis of the signal. The maximum
value for coefficient and its gradients were used as sig-
nature for BRB detection. Fig. 6 illustrates the zoom-
in demonstration around the maximum coefficient deter-
mined for each wavelet function. Besides maximum coef-
ficient and its gradients, the energy value of the decom-
posed signal at 8th detail was determined and considered
as a fault characteristic feature. Table 1 and Table 2
present the mean values for the characteristic features
of the 8th detail decomposition for healthy and faulty ma-
chines under different levels of load when various types of
wavelet function were applied for signal decomposition.

It has been proven in case of fault presence in the
motor, the fault signatures have higher values than the
one for healthy condition [17,18]. However, the data pre-
sented in Table 1 and Table 2 indicate some inconsisten-
cies. For instance, that, when Coiflet 5, Daubechies 6
and Daubechies 10 were used, values for left gradient
and maximum coefficient for faulty motor were smaller
than healthy motor. The same observation was made
for the right gradient when Coiflet 5 and Daubechies 6
were used as a wavelet function. No such inconsisten-
cies were observed when Biorthogonal 6.8, Coiflet 2 and
Daubechies 1 were applied for wavelet decomposition of

Table 3. Statistical parameters computed for characteristic fea-
tures obtained from wavelet analysis of the current signal using
Biorthogonal 6.8 and Daubechies 1
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the signal. These observations express that not only the
type of wavelet function used for signal analysis influence
the result but also the characteristic feature needs to be
taken into account.

Since just three wavelet functions, Biorthogonal 6.8,
Coiflet 2 and Daubechies 1, showed reliable information,
these three were further investigated. The standard de-
viations of all features for these three wavelet functions
were computed as presented in Table 3. Comparatively,
Daubechies 1 had smaller standard deviation that indi-
cates the sampled data had smaller dispersion from the
average. Therefore, the characteristic features obtained
from decomposition of current signal using Daubechies 1
were more reliable to be used for incipient fault detec-
tion in SCIM than Biorthogonal 6.8 and Coiflet 2. In this
study, it has been proven that there is a significant dif-
ference in ability of wavelet functions for accurate signal
analysis and interpretation. Therefore, the arbitrary se-
lection of wavelet function for wavelet analysis of signal
cannot provide reliable information for fault detection in
motor. Moreover, it is recommended that different char-
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Fig. 6. The zoom-in graph around the maximum wavelet coefficient for healthy and faulty motors using a) Biorthogonal 6.8, b) Coiflet
2, c) Coiflet 5, d) Daubechies 1, e) Daubechies 6, f) Daubechies 10

acteristic features to be selected and observed as the ac-
curacy of the monitoring will be enhanced.

4 Conclusion

In this study, different types of wavelet functions were
examined for early detection of BRB in SCIM. The func-
tions were applied to decompose the current signal, and
compared in screening the features related to the present
fault. The characteristic features observed were the max-
imum wavelet coefficients, left and right gradients of the
maximum coefficient. This study proved that the types
of wavelet function used for signal analysis influence the
reliability of the diagnostic method. Among different
wavelet functions examined in this research for current
signal decomposition, Daubechies 1 provided much more
reliable information for early detection of BRB. An in-
crease in all characteristics features were observed for
faulty motor compared to the healthy motor that worked
under similar level of the load. Besides that, observing
different characteristic features enhances the accuracy

and reliability of the fault detection.
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