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Abstract. Stress analysis method was used to establish a theoretical model to find the energy release rate for
initiation of an interfacial crack and progressive debonding with friction at debonded interface. For this pro-
pose, using stress equilibrium equations, boundary and continuity conditions and minimum complementary
energy principle, we defined an expression for energy release rate, G, for a single fibre embedded in a concen-
tric cylindrical matrix, to explore the fibre/matrix interfacial fracture properties. We determine the critical
crack length by interfacial debonding criterion. Also, Numerical calculation results for fibre-reinforced com-
posite, SiC/LAS, were compared with experimental data witch obtained by other methods.
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1 Introduction

For both theoretical analysis and experimental stud-
ies to develop a successful fiber–reinforced composite, the
properties of the fiber/matrix interface have been identi-
fied as a key factor. The most important of these proper-
ties is the constraint between the fiber and matrix that
is related to slipping and debonding, which is associated
with the work of fracture for composite failure. Therefore,
many researches have used single fiber composites model
to study and explore the initiation and progressing of in-
terfacial fiber/matrix debonding. By testing fiber pull–
out, Hampe et al. pointed out that a debonded interface
may appear before the interfacial shear stress reaches
the shear strength, which shows that the shear strength–
based criterion is invalid to some extent [1]. Honda and
Kagawa showed that, according to the energy–based in-
terfacial debonding criterion, the interface crack grows
when the energy release rate G exceeds the interfacial
debonding toughness [2]. By applying the shear–lag mod-
els and the Lamé method respectively, Hsueh and Ochiai
et al. obtained solutions for the energy release rate and
the bridging law [3,4]. However, they neglected the shear
stress and strain energy in the fiber, the interfacial ra-
dial stress, the variation of axial stress in the matrix
with radial positions, and the Poisson’s effect. When the
axial stress in the matrix is substituted by an equiv-
alent axial stress concentrating on an effective radius,
Chiang further derived an expression for the energy re-
lease rate including the axial strain energy in the fiber,
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Fig. 1. A composite cylindrical model of length L having an
interracial crack of length a

and the axial and shear strain energy in the matrix [5].
Rauchs and Withers obtained numerical solutions of the
energy release rate by using the finite element method [6].
However, oversimplifications resulted in serious errors.
Damage growth by debonding in a single fibre metal ma-
trix composite is investigated by Papakaliatakis and Kar-
alekas [7]. They Elastoplasticity and strain energy den-
sity criterion for this propose. Kushch et al. are ap-
plied numerical simulation of progressive debonding in
fiber reinforced composite under transverse loading [8].
Johnson et al. studied the role of matrix cracks and fi-
bre/matrix debonding on the stress transfer between fibre
and matrix in a single fibre fragmentation test [9].

In this paper we extract an expression for strain en-
ergy release rate (SERR) for a crack propagation analy-
sis by using stress equilibrium equations, boundary and
continuity conditions and minimum complementary en-
ergy principle. For this propose, as shown in Fig. 1 a sin-
gle fiber embedded in a concentric cylindrical matrix in
a cylindrical coordinate (r, z,θ) is considered. In Fig. 1 a
specimen with an interfacial crack with a crack length of
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a is divided into two regions [10]:

1. Region I is the region within the interfacial crack.
2. Region II is the region with an intact region.

Our first step is to find stresses in each region. Af-
ter that, we should calculate total strain energies in the
specimen. Then, according to strain energy release rate
definition we extract an expression for SERR.

2 Stress Analysis

2.1 Region I

Consider the equilibrium of the axial force acting on
element of length in the fiber of region I, leads to the fol-
lowing equation.

dσ f ×
(
πr2

f

)
=−τs ×

(
πr f

)
.dz ⇒ dσ f

dz
=− 2

r f
τs (1)

Considering the boundary conditions as bellow.

σ (z = L)= (
E f /E

)
σ (2)

σm (z = L)= (Em/E)σ (3)

σ f (z = 0)= (
σ/Vf

)
(4)

σm (z = 0)= 0 (5)

and total axial stresses satisfaction

Vfσ f +Vmσm =σ (6)

Solving (1) and using (2) to (6), the fiber and matrix
stresses in the cracked iterfacial length, region I, (0≤ z ≤
a) become

σ f ,I (z)=
(
σ

Vf

)
−

(
2τs

r f

)
z (7)

σm,I (z)=
( Vf

Vm

)
−

(
2τs

r f

)
z (8)

where a denote the crack length, Vm, Vf show matrix and
fiber volume fraction and τs, σm, σ f and σ are interfacial
shear stress, matrix and fiber and far field axial stresses.

In the cylindrical coordinate, the equilibrium equations
for a 3D axi–symmetric problem are given by

∂σr

∂r
+ ∂τrz

∂z
+ σr −σθ

r
= 0 (9)

∂σz

∂z
+ ∂τrz

∂r
+ τrz

r
= 0 (10)

Solving (9) and (10) and using boundary conditions as
below.

τ f
(
r = r f , z

)=τm
(
r = r f , z

)
=τs

(11)

τm (r = rm, z)= 0 (12)

Shear stresses in region I are calculated.

τ f ,I (r, z)= r
r f
τs (13)

τm,I (r, z)= Vf
(
r2

m − r2)
Vmr f r

τs (14)

2.2 Region II

For calculation the stresses in this region we introduce
stress function as

Fk = Hk (z) Ik (r) (15)

where k = f ,m represent the fiber and matrix, respec-
tively. The stress solutions satisfying (9) and (10) at re-
gion II are expressed as

σk (z)=∂
2Fk

∂r2 + 1
r
∂Fk

∂r

=
(
∂2Ik (r)
∂r2 + 1

r
∂Ik (r)
∂r

)
Hk

(16)

τk (r, z)=∂
2Fk

∂r∂z

=− ∂Ik

∂r
.
∂Hk

∂z

(17)

σk (θ)=σk (r)

=∂
2Fk

∂z2

=Ik (r) .
∂2Hk

∂z2

(18)

Therefore, using stress boundary conditions as below.
σ f ,I I (z = a)= σ

Vf
− 2τsa

r f

σm,I I (z = a)= 2Vf τsa
Vmr f

(19)


σ f ,I I (z = L)= E f

E
σ

σm,I I (z = L)= Em

E
σ

(20)

σ f
(
r = r f

)=σm
(
r = r f

)
(21)

τ f
(
r = r f , z

)=τm
(
r f , z

)
=τi (z)

(22)

σm (r, rm)=τm (r = rm, z)
=0

(23)

where r f , rm and τi(z) denote fiber and matrix radius
and interfacial shear stress in region II, respectively.

By solving (16) and substituting (19) the functions I f ,
Im and Hm are expressed as

I f = 1
4

(
σ

Vf
− 2τsa

r f

)
r2 + A f (24)

Im (r)= Am
(
r2)+BmLn (r)+Cm (25)

Hm = σ

4Vm Am

(
1+ 2τsa

r f
H f

)
(26)

where A f , Am, Bm and Cm are constant coefficients
which by using (20) to (23) are calculated as

A f =1
4

(
σ

Vf
− 2τsa

r f

)
×

( Vf

Vm

(
r2

f − r2
m −2r2

mLn
rm

r f

)
+ r2

f

) (27)
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Am =− Vf

4Vm

(
σ

Vf
− 2τsa

r f

)
(28)

Bm =−
( Vf

Vm

)(
r2

m

2Lnrm

)(
σ

Vf
− 2τsa

r f

)
(29)

Cm =
(Vf r2

m

4Vm

)(
σ

Vf
− 2τsa

r f

)
(30)

By substituting (27) to (30) into (24) and (25) and using
(16) to (18), the stresses in region II are written as

σ f ,I I (z)=
(

VmEmσ

Vf E
− 2τsa

r f

)
λ (z)+ E f

E
σ (31)

σm,I I (z)=
(Vf τsa

Vmr f
− Emσ

E

)
λ (z)+ Em

E
σ (32)

τi (z)= ψ

2

(
VmEmσ

Vf E
− 2τsa

r f

)
λ (z) (33)

τ f ,I I (r, z)= rψ
2r f

(
VmEmσ

Vf E
− 2τsa

r f

)
λ (z) (34)

τm,I I (r, z)=Vf
(
r2

m − r2)ψ
2Vmr f r

×
(

VmEmσ

Vf E
− 2τsa

r f

)
λ (z)

(35)

σ f ,I I (r)=σ f ,I I (θ)

=

(
r2 − r2

f −
Vf

(
r2

f −r2
m

(
1−2Ln

r f
rm

))
Vm

)
ψ2

4r2
f

×
((

VmEmσ

Vf E
− 2τsa

r f

)
λ (z)

) (36)

σ f ,I I (r)=σ f ,I I (θ)

=
(
r2 − r2

m

(
1−2Ln r f

rm

))
ψ2

4r2
f

×
((

2Vf τsa
Vmr f

− Emσ

E

)
λ (z)

) (37)

where

λ (z)= e
−ψ(z−a)/r f (38)

and

ψ= E
E f Vm (1−vm)φ

(39)

And φ is a non–dimensional parameter, given by Budian-
sky and Cui [11] as

φ=− 1
2V 2

m

(
2LnVf +Vm

(
3−Vf

))
(40)

In above equations E, Em and E f are Young’s modu-
lus of composite, matrix and fiber, respectively, and vm
denotes the Poisson’s ratio for matrix.

3 Strain Energy Release Rate

The total strain energy in the specimen is

Π=UI +UI I +UW (41)

where UI and UI I denote the total strain energy in region
I and II, respectively. UW is the work done by external
forces. Therefore, according to crack propagation concept
and Minimum complementary energy principle, the to-
tal energy release rate associated with growth of crack in
Fig. 1 is

G =∂Π
∂A

= −1
2πr f

· ∂Π
∂a

⇒G = −1
2πr f

(
∂UI

∂a
+ ∂UI I

∂a
+ ∂UW

∂a

) (42)

Then, we should calculate UI , UI I and UW separately.

Ui =U f ,i +Um,i i = I, I I (43)

In (43), U f ,i and Um,i are total strain energy for fiber
and matrix respectively, in region I and II with respect
to suffix i and according to strain energy definition is ex-
pressed as

U f ,i =
∫ 2π

0

∫ r f

0

∫ y

x

σ f ,i (z)ε f (z)
2

+σ f ,i (r)ε f (r)
2

+ σ f ,i (θ)ε f (θ)
2

+τ f ,i (r, z)ε f (r, z) r dz dr dθ

(44)

Um,i =
∫ 2π

0

∫ rm

0

∫ y

x

σm,i (z)εm (z)
2

+σm,i (r)εm (r)
2

+ σm,i (θ)εm (θ)
2

+τm,i (r, z)εm (r, z) r dz dr dθ

(45)

In (44) and (45), if i = I then x = 0 and y = a; and if
i = I I then x = a and y= L.

By using stresses which are calculated in the previous
section and substituting (7), (8), (13) and (14) into (44)
and substituting (31) to (37) into (44), we find expressions
for total strain energy in each region as below

UI = η1a3 +η2a2 +η3a (46)

where a is crack length and

η1 =
2πτ2

s

3

(
1

r f E f
+

V 2
f

V 2
mEm

)
(47)

η2 =
−πr fστs

Vf E f
(48)

η3 =
πV 2

f τ
2
s

4V 2
mGmr2

f

×
(
4r4

mLn
rm

r f
−3r2

m + r4
f −4r2

f r2
m

)

+
πr2

f

2

(
σ2

E f
+ τ2

s

2G f

)
(49)
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and
UI I =µ1a3 +µ2a2 +µ3a (50)

where

µ1 = π

3

(
6Eτ2

s

VmEmE f
− 2τ2

s

E f r f
−

2V 2
f τ

2
s

V 2
mEm

)
(51)

µ2 =π2

(
2V 2

f r fψφ
(
1+vmτ

2
s
)

V 2
mEm

)

+π
2

(
6Er f τ

2
s

ψVmEmE f
− r fστ

2
s

Vf E f
− 2Er f τs

ψVmEmE f

) (52)

µ3 =
πr fστs

ψVf

(−V 2
mψ2φ (1−vm)

4Vf E
+ 3

E f
− 4r f

E f

)

+
−πr2

fσ
2

Vf E f

(
VmEm

2Vf E
+ E f

E
− 1

Vf
+ Vf

2

) (53)

Also, for calculating UW we have

UW =UF −UP (54)

UF is the work done by friction stress τs and UP is the
work done by tensile stress acting on fiber which are pre-
sented as [10]

UF = 2πr f

∫ a

0
τs v (z) dz (55)

where v (z) is relative axial displacement between the
fiber and the matrix which was given by Chiang [5].

Then, by solving (51) we find

UF = χ1a3 +χ2a2 +χ3a (56)

where

χ1 = −4π
3

(
Eτ2

s

VmEmE f

)
(57)

χ2 =π
( r fστs

Vf E f
− 4Er f τs

ψVmEmE f

)
(58)

χ3 =π
(

2r2
fστs

ψVf E f

)
(59)

And the work is done by friction stress τs is

Up =
πr2

fσ

Vf
v (0) (60)

Up = ξ1a2 +ξ2a+ξ3 (61)

where

ξ1 =
πr fστs

Vf E f
(62)

ξ2 =
( −σ

Vf E f
+ 2τs

ψE f
+ σ

E

) πr2
f

Vf
σ (63)

ξ3 =
(

r f VmEm +LψVf E f

ψV 2
f E f E

)
πr2

fσ
2 (64)

By Combining (42), (46), (50), (56) and (61), an expres-
sion for the energy release rate is obtained as

Up =α1a2 +α2a+α3 (65)

where

α1 =
Eτ2

s

r f VmE f Em
(66)

α2 =
−V 2

f ψφ (1−vm)τ2
s

V 2
mEm

+ 3Eτ2
s

ψVmEmE f

−
(

σ

2Vf E f
+ E
ψVmEmE f

)
τs

(67)

α3 =
V 2

mψφ (1+vm)στs

8V 2
f E

− 3στs

2ψVf E f

+ r f VmEmσ
2

4V 2
f E f E

−
r2

f τ
2
s

8G f
−

πV 2
f τ

2
s

8V 2
mGmr3

f

×
(
4r4

mLn
rm

r f
−3r2

m + r4
f −4r2

f r2
m

)
(68)

4 Results

We Show that the energy release rate is a second–order
function of the cracked length a when the material and
geometry parameters are known. When an interfacial
crack growth criterion G ≥ Γi is introduced, the critical
crack length can be determined by

G ≥Γi ⇒α1a2α2a+α3 −Γi ≥ 0 (69)

ac1,2 =
−α2 ±

√
α2

2 −4α1 (α3 −Γi)

2α1
(70)

Only the smaller αc of the two roots of (70) is physically
meaningful.

Fig. 2 shows Distributions of the energy release rate via
the normalized cracked length which is extracted with an
exact solution and good agreement between the methods
is presented in this paper with the others.

As we can see in Fig. 2 the curves G relative to normal-
ized crack length have the first decreasing and then re–
increasing tendency. The re–increasing part is physically
meaningless because interfacial debonding appears only
at G ≥Γi and stops after the condition G =Γi is satisfied.
The effect of friction, between fiber and matrix in region I
is considered in this paper as important factor for calcu-
lation of strain energy release rate that is illustrated in
Fig. 3.

Fig. 2. Distributions of the energy release rate via the normal-
ized cracked length
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Fig. 3. The effect of friction between fiber and matrix in region II

According to Fig. 3, increasing friction stress τs results
in a smaller G at the same a/r f , improving the interfa-
cial debonding toughness Γi. The curves G − (a/r f

)
tend

to be smooth when the friction stress τs decreases and
approaches the minimum value τs = 0, where the energy
release rate reaches the maximum value G = 6.02

[ J
m2

]
for the decreasing parts of curves.

5 Conclusion

For calculating strain energy release rate, we divided
the single fiber embedded in a concentric cylindrical ma-
trix into two regions. Region I is cracked and region II is
intact region. Using stress equilibrium equations, bound-
ary and continuity conditions for each region we calculate
stresses separately and then according to minimum com-
plementary energy principle, we define strain energy re-
lease rate as second order function of crack length.

The following conclusions are obtained

1. The presented method in this paper is feasible to de-
termine critical debond length in fiber/matrix inter-
facial crack.

2. Numerical calculation results for fiber–reinforced
composite, SiC/LAS, have good agreement with ex-
perimental data which obtained by other methods.

3. The curves G relative to normalized crack length
have the first decreasing and then re-increasing ten-
dency. The re–increasing part is physically mean-
ingless because interfacial debonding appears only
at G >Γi and stops after the condition G =Γi is sat-

isfied.
4. When the interfacial friction between fiber and ma-

trix at region I increase, the curves G relative to the
normalized crack length have sharp slope and when
we have complete debonding in interface of fiber and
matrix, G is independent from crack length.

5. The shear effects in the fiber and matrix and Pois-
son’s effect neglected by the shear–lag models be-
come more remarkable with the increase of friction
stress τs for suppressing the interface failure.
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