COVID-19 Drugs and Glucose-6-phosphate Dehydrogenase Deficiency: A Matter of Life Threatening And Public Health

Carmela Ioscoa, Verity Eason, Ibrahima Gueyec, Renee Leavy

Abstract


Background: The current COVID-19 pandemic has created significant health consequences for the world population. Therapies and drugs are being continuously developed in an effort to implement the most effective treatment. G6PD deficiency is the most prevalent human enzymatic defect, affecting more than 500 million people worldwide, but is infrequently taken into consideration in healthcare practice. Purpose: The aim of this review is collecting and assembling the most relevant information about safety of current drugs and nutraceuticals, proposed or already used for COVID-19 treatment, with regard to G6PD deficient people, in order to know possible drug-induced adverse effects. Methods: An extensive literature search was performed through scientific papers, unsafe drug lists, drug datasheets, drug databases, National Public Health institutional websites. Results: Methylene blue, ozone, chloroquine and hydroxychloroquine administration should be avoided in G6PD deficient patients. The other reviewed drugs should be administered at therapeutic doses under medical supervision. Conclusion: The list of drugs and nutraceuticals for use in COVID-19 here provided, usefully brought to Healthcare personnel’s and patients’ awareness before any drug administration, may allow you to avoid or at least manage any possible drug-associated symptoms - particularly hemolytic crisis, which is a potentially fatal risk for G6PD deficient patients.

Keywords


COVID-19, Glucosephosphate Dehydrogenase Deficiency, Safety, Drug, Nutraceutical

Full Text:

PDF

References


Barlow A, Landolf KM, Barlow B, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy. 2020 May;40(5):416-437. doi: 10.1002/phar.2398. Epub 2020 May 6. PMID: 32259313; PMCID: PMC7262196.

ISS COVID-19 Rare Diseases Working Group Report 14/2020 Interim Guidance for the appropriate support of people with enzymopenia G6PD (favism) in the current SARS-CoV-2 emergency scenario https://www.iss.it/rapporti-iss-covid-19-in-english Accessed August 20th 2020

Mangat C, Inoue S, Saah E, Sharman M. Acute haemolytic anaemia and myolysis due to G6PD deficiency. BMJ Case Rep. 2014 Sep 18;2014:bcr2014203631. doi: 10.1136/bcr-2014-203631. PMID: 25234071; PMCID: PMC4170498.

Vick DJ. Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 Infection. Mayo Clin Proc. 2020 Aug;95(8):1803-1804. doi: 10.1016/j.mayocp.2020.05.035. Epub 2020 Jun 6. PMID: 32680625; PMCID: PMC7275177.

Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020 May;92(5):479-490. doi: 10.1002/jmv.25707. Epub 2020 Mar 3. PMID: 32052466; PMCID: PMC7166986.

Italian G6PD Deficiency Association. List of drugs to avoid [in Italian] https://www.g6pd.org/it/g6pddeficiency-it/safeunsafe-it/Unsafe-it.aspx Accessed July 5th 2020

National Agency of drug safety and health products. List of drug active ingredients that may provoke hemolysis in G6PD Deficient people [in French] https://ansm.sante.fr/S-informer/Points-d-information-Points-d-information/Medicament-et-deficit-en-G6PD-l-ANSM-actualise-le-referentiel-Point-d-Information Accessed July 8th 2020

Beauverd Y, Adam Y, Assouline B, Samii K. COVID-19 infection and treatment with hydroxychloroquine cause severe haemolysis crisis in a patient with glucose-6-phosphate dehydrogenase deficiency. Eur J Haematol. 2020 Apr 23:10.1111/ejh.13432. doi: 10.1111/ejh.13432. Epub ahead of print. PMID: 32324284; PMCID: PMC7264743.

Guidelines for Preparing Core Clinical-Safety Information on Drugs, Second Edition, Report of CIOMS Working Groups III and V, Geneva, 1999, p. 36 https://cioms.ch/wp-content/uploads/2018/03/Guidelines-for-Preparing-Core-Clinical-Safety-Info-Drugs-Report-of-CIOMS-Working-Group-III-and-V.pdf , Accessed June 21st 2021

Maillart E, Leemans S, Van Noten H, et al. A case report of serious haemolysis in a glucose-6-phosphate dehydrogenase-deficient COVID-19 patient receiving hydroxychloroquine. Infect Dis (Lond). 2020 Sep;52(9):659-661. doi: 10.1080/23744235.2020.1774644. Epub 2020 Jun 4. PMID: 32496938; PMCID: PMC7284136.

Samimagham HR, Hassani Azad M, Haddad M, Arabi M, Hooshyar D, KazemiJahromi M. The Efficacy of Famotidine in improvement of outcomes in Hospitalized COVID-19 Patients: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020 Oct 13;21(1):848. doi: 10.1186/s13063-020-04773-6. PMID: 33050945; PMCID: PMC7552598.

Ibrahim H, Perl A, Smith D, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020 Oct;219:108544. doi: 10.1016/j.clim.2020.108544. Epub 2020 Jul 22. PMID: 32707089; PMCID: PMC7374140.

Badary OA. Pharmacogenomics and COVID-19: clinical implications of human genome interactions with repurposed drugs. Pharmacogenomics J. 2021 Jun;21(3):275-284. doi: 10.1038/s41397-021-00209-9. Epub 2021 Feb 4. PMID: 33542445; PMCID: PMC7859465.

Italian Drug Agency (AIFA), Drug Database [in Italian],

https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/home Accessed July 31st 2020

Irish Drug Agency (HPRA), Drug Database, http://www.hpra.ie/homepage/medicines/medicines-information/find-a-medicine Accessed June 30th 2021

British Drug Agency (MHRA), Drug Database, https://products.mhra.gov.uk/ Accessed June 30th 2021

Liu J, Zhang K, Cheng L, Zhu H, Xu T. Progress in Understanding the Molecular Mechanisms Underlying the Antitumour Effects of Ivermectin. Drug Des Devel Ther. 2020 Jan 21;14:285-296. doi: 10.2147/DDDT.S237393. PMID: 32021111; PMCID: PMC6982461.

Wagle A, Jivraj S, Garlock GL, Stapleton SR. Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem. 1998 Jun 12;273(24):14968-74. doi: 10.1074/jbc.273.24.14968. PMID: 9614103.

Maffi D, Caforio MP, Pasquino MT, Caprari P. Health Superior Institute, Glucose phosphate dehydrogenase deficiency and drugs 2009, 31 p. ISTISAN Reports 09/47 [in Italian], consulted on 7th July 2020 http://old.iss.it/binary/publ/cont/0947web.pdf

Gratton R, Tricarico PM, Guimaraes RL, Celsi F, Crovella S. Lopinavir/Ritonavir Treatment Induces Oxidative Stress and Caspase independent Apoptosis in Human Glioblastoma U-87 MG Cell Line. Curr HIV Res. 2018;16(2):106-112. Abstract. doi: 10.2174/1570162X16666180528100922. PMID: 29804534.

Bissinger R, Waibel S, Bouguerra G, Al Mamun Bhuyan A, Abbès S, Lang F. Enhanced Eryptosis Following Exposure to Lopinavir. Cell Physiol Biochem. 2015;37(6):2486-95. doi: 10.1159/000438601. Epub 2015 Dec 17. PMID: 26681533.

Arnold M, Lang E, Modicano P, et al. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol. 2014 May;114(5):421-6. doi: 10.1111/bcpt.12171. Epub 2013 Dec 11. PMID: 24215285.

El-Sayed WM, Al-Kahtani MA. Potential adverse effects of oseltamivir in rats: males are more vulnerable than females. Can J Physiol Pharmacol. 2011 Sep;89(9):623-30. Abstract. doi: 10.1139/y11-060. Epub 2011 Aug 23. PMID: 21861687.

Balestrieri C, Serra G, Cauli C, Chessa L, Balestrieri A, Farci P. Treatment of chronic hepatitis C in patients with glucose-6-phosphate dehydrogenase deficiency: is ribavirin harmful? Blood. 2006 Apr 15;107(8):3409-10. doi: 10.1182/blood-2005-11-4508. PMID: 16597599.

Yang CJ, Wei YJ, Chang HL, Chang PY, Tsai CC, Chen YH, Hsueh PR. Remdesivir use in the coronavirus disease 2019 pandemic: A mini-review. J Microbiol Immunol Infect. 2021 Feb;54(1):27-36. doi: 10.1016/j.jmii.2020.09.002. Epub 2020 Oct 5. PMID: 33060041; PMCID: PMC7534785.

De Franceschi L, Costa E, Dima F, Morandi M, Olivieri O. Acute hemolysis by hydroxycloroquine was observed in G6PD-deficient patient with severe COVD-19 related lung injury. Eur J Intern Med. 2020 Jul;77:136-137. doi: 10.1016/j.ejim.2020.04.020. Epub 2020 Apr 20. PMID: 32381323; PMCID: PMC7167571.

Radhakrishnan KM, Chakravarthi S, Pushkala S, Jayaraju J. Component therapy. Indian J Pediatr. 2003 Aug;70(8):661-6. Abstract. doi: 10.1007/BF02724257. PMID: 14510088.

Marik PE, Kory P, Varon J, Iglesias J & Meduri GU MATH+ protocol for the treatment of SARS-CoV-2 infection: the scientific rationale, Expert Review of Anti-infective Therapy 2020 doi: 10.1080/14787210.2020.1808462

Ozmen I. Evaluation of effect of some corticosteroids on glucose-6-phosphate dehydrogenase and comparative study of antioxidant enzyme activities. J Enzyme Inhib Med Chem. 2005 Feb;20(1):19-24. doi: 10.1080/14756360412331295026. PMID: 15895680.

Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 2012 Apr;50(4):264-74. doi: 10.1038/sc.2011.111. Epub 2011 Oct 11. PMID: 21987065.

Vanella A, Campisi A, Castorina C, et al. Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: effect of deferoxamine. Pharmacol Res. 1991 Jul;24(1):25-31. Abstract. doi: 10.1016/1043-6618(91)90061-2. PMID: 1946141.

al-Rimawi HS, al-Sheyyab M, Batieha A, el-Shanti H, Abuekteish F. Effect of desferrioxamine in acute haemolytic anaemia of glucose-6-phosphate dehydrogenase deficiency. Acta Haematol. 1999;101(3):145-8. Abstract. doi: 10.1159/000040941. PMID: 10352334.

Asokkumar K, Sen S, Umamaheswari M, Sivashanmugam AT, Subhadradevi V. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa. Pharmacol Rep. 2014 Aug;66(4):594-9. Abstract. doi: 10.1016/j.pharep.2014.01.006. Epub 2014 Apr 26. PMID: 24948059.

Lapenna D, De Gioia S, Mezzetti A, et al. H2-receptor antagonists are scavengers of oxygen radicals. Eur J Clin Invest. 1994 Jul;24(7):476-81. Abstract. doi: 10.1111/j.1365-2362.1994.tb02378.x. PMID: 7957505.

US National Library of Medicine, Drug Database, https://medlineplus.gov/druginfo/meds , Accessed June 30th 2021

Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020 Jun 1;250:117583. doi: 10.1016/j.lfs.2020.117583. Epub 2020 Mar 23. PMID: 32217117; PMCID: PMC7102583.

Almeida A, Faustino MAF, Neves MGPMS. Antimicrobial Photodynamic Therapy in the Control of COVID-19. Antibiotics (Basel). 2020 Jun 11;9(6):320. doi: 10.3390/antibiotics9060320. PMID: 32545171; PMCID: PMC7344747.

Naymagon L, Berwick S, Kessler A, Lancman G, Gidwani U, Troy K. The emergence of methemoglobinemia amidst the COVID-19 pandemic. Am J Hematol. 2020 Aug;95(8):E196-E197. doi: 10.1002/ajh.25868. Epub 2020 Jun 3. PMID: 32413176; PMCID: PMC7276830.

Rehman A, Shehadeh M, Khirfan D, Jones A. Severe acute haemolytic anaemia associated with severe methaemoglobinaemia in a G6PD-deficient man. BMJ Case Rep. 2018 Mar 28;2018:bcr2017223369. doi: 10.1136/bcr-2017-223369. PMID: 29592989; PMCID: PMC5878343.

Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacotherapy. 2020 Jun 15:10.1002/phar.2438. doi: 10.1002/phar.2438. Epub ahead of print. PMID: 32542785; PMCID: PMC7323235.

Baricitinib Package Insert, Eli Lilly and Company, https://pi.lilly.com/us/olumiant-uspi.pdf Accessed June 24th 2021

Galimberti S, Baldini C, Baratè C, et al. The CoV-2 outbreak: how hematologists could help to fight Covid-19. Pharmacol Res. 2020 Jul;157:104866. doi: 10.1016/j.phrs.2020.104866. Epub 2020 May 6. PMID: 32387301; PMCID: PMC7202852.

European Medicine Agency (EMA), Drug Database, https://www.ema.europa.eu/en/medicines/national-registers-authorised-medicines Accessed June 30th 2021

Briglia M, Fazio A, Faggio C, Laufer S, Alzoubi K, Lang F. Triggering of Suicidal Erythrocyte Death by Ruxolitinib. Cell Physiol Biochem. 2015;37(2):768-78. doi: 10.1159/000430394. Epub 2015 Sep 11. PMID: 26356267.

Costa NT, Iriyoda TMV, Alfieri DF, Simão ANC, Dichi I. Influence of disease-modifying antirheumatic drugs on oxidative and nitrosative stress in patients with rheumatoid arthritis. Inflammopharmacology. 2018 Oct;26(5):1151-1164. Abstract. doi: 10.1007/s10787-018-0514-9. Epub 2018 Jul 30. PMID: 30062629.

Emapalumab Package Insert, US Food and Drug Administration (FDA), https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761107lbl.pdf , Accessed July 6th 2021

Beutler E. Acetaminophen and G-6-PD deficiency. Acta Haematol. 1984;72(3):211-2. doi: 10.1159/000206390. PMID: 6438988.

Najafi N, Van de Velde A, Poelaert J. Potential risks of hemolysis after short-term administration of analgesics in children with glucose-6-phosphate dehydrogenase deficiency. J Pediatr. 2011 Dec;159(6):1023-8. Abstract. doi: 10.1016/j.jpeds.2011.05.056. Epub 2011 Jul 23. PMID: 21784438.

Amoruso MA, Ryer J, Easton D, Witz G, Goldstein BD. Estimation of risk of glucose 6-phosphate dehydrogenase-deficient red cells to ozone and nitrogen dioxide. J Occup Med. 1986 Jul;28(7):473-9. doi: 10.1097/00043764-198607000-00005. PMID: 3734915.

Fernández-Cuadros ME, Albaladejo-Florín MJ, Peña-Lora D, Álava-Rabasa S, Pérez-Moro OS. Ozone (O3) and SARS-CoV-2: Physiological Bases and Their Therapeutic Possibilities According to COVID-19 Evolutionary Stage. SN Compr Clin Med. 2020 Jul 7:1–9. doi: 10.1007/s42399-020-00328-7. Epub ahead of print. PMCID: PMC7340747.

Marques AC, Busanello ENB, de Oliveira DN, Catharino RR, Oliveira HCF, Vercesi AE. Coenzyme Q10 or Creatine Counteract Pravastatin-Induced Liver Redox Changes in Hypercholesterolemic Mice. Front Pharmacol. 2018 Jun 27;9:685. doi: 10.3389/fphar.2018.00685. PMID: 29997512; PMCID: PMC6030358.

Liu A, Wu Q, Guo J, et al. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther. 2019 Mar;195:54-84. Abstract. doi: 10.1016/j.pharmthera.2018.10.004. Epub 2018 Oct 12. PMID: 30321555

Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients. 2020 May 19;12(5):1466. doi: 10.3390/nu12051466. PMID: 32438620; PMCID: PMC7284818.

Georgakouli K, Fatouros IG, Fragkos A, et al. Exercise and Redox Status Responses Following Alpha-Lipoic Acid Supplementation in G6PD Deficient Individuals. Antioxidants (Basel). 2018 Nov 12;7(11):162. doi: 10.3390/antiox7110162. PMID: 30424472; PMCID: PMC6262273.

ALA Package Insert, torrinomedica.it/parafarmaci/monografie/tiobec_800_20cpr_32g/ [in Italian] Accessed December 2nd 2020

Chen BH, Tsai JL, Tsai LY, Chao MC. Comparison of serum copper, magnesium, zinc and calcium levels between G6PD deficient and normal Chinese adults. Kaohsiung J Med Sci. 1999 Nov;15(11):646-50. PMID: 10630061.

Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo. 2020 Jun;34(3 Suppl):1567-1588. doi: 10.21873/invivo.11946. PMID: 32503814.

Turnlund JR, Jacob RA, Keen CL, Strain JJ, Kelley DS, Domek JM, Keyes WR, Ensunsa JL, Lykkesfeldt J, Coulter J. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am J Clin Nutr. 2004 Jun;79(6):1037-44. doi: 10.1093/ajcn/79.6.1037. PMID: 15159234. Abstract

Moore GS, Calabrese EJ. G6PD-deficiency: a potential high-risk group to copper and chlorite ingestion. J Environ Pathol Toxicol. 1980 Sep;4(2-3):271-9. Abstract. PMID: 7462905.

Chen QL, Luo Z, Pan YX, et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper. Aquat Toxicol. 2013 Jul 15;136-137:72-8. Abstract. doi: 10.1016/j.aquatox.2013.04.003. Epub 2013 Apr 17. PMID: 23660017.

Tan CW, Ho LP, Kalimuddin S, Cherng BPZ, Teh YE, Thien SY, Wong HM, Tern PJW, Chandran M, Chay JWM, Nagarajan C, Sultana R, Low JGH, Ng HJ. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020 Nov-Dec;79-80:111017. doi: 10.1016/j.nut.2020.111017. Epub 2020 Sep 8. PMID: 33039952; PMCID: PMC7832811.

de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015 Jan;95(1):1-46. doi: 10.1152/physrev.00012.2014. PMID: 25540137.

Science M, Johnstone J, Roth DE, Guyatt G, Loeb M. Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2012 Jul 10;184(10):E551-61. doi: 10.1503/cmaj.111990. Epub 2012 May 7. PMID: 22566526; PMCID: PMC3394849.

Chung MJ, Walker PA, Brown RW, Hogstrand C. ZINC-mediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol Appl Pharmacol. 2005 Jun 15;205(3):225-36. doi: 10.1016/j.taap.2004.10.008. PMID: 15922008.

Tandogan B, Ulusu NN. Effects of cadmium and zinc ions on purified lamb kidney cortex glucose-6-phosphate dehydrogenase activity. J Enzyme Inhib Med Chem. 2006 Apr;21(2):225-30. doi: 10.1080/14756360500480533. PMID: 16789437.

Kasperczyk S, Dobrakowski M, Kasperczyk A, Ostałowska A, Birkner E. The administration of N-acetylcysteine reduces oxidative stress and regulates glutathione metabolism in the blood cells of workers exposed to lead. Clin Toxicol (Phila). 2013 Jul;51(6):480-6. Abstract. doi: 10.3109/15563650.2013.802797. Epub 2013 Jun 4. PMID: 23731375.

Ibrahim IH, Sallam SM, Omar H, Rizk M. Oxidative hemolysis of erythrocytes induced by various vitamins. Int J Biomed Sci. 2006 Sep;2(3):295-8. PMID: 23674994; PMCID: PMC3614607.

Mozos I, Stoian D, Luca CT. Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. Dis Markers. 2017; 2017:8784971. doi: 10.1155/2017/8784971. Epub 2017 Jan 12. PMID: 28167849; PMCID: PMC5266829.

Lee SW, Lai NM, Chaiyakunapruk N, Chong DW. Adverse effects of herbal or dietary supplements in G6PD deficiency: a systematic review. Br J Clin Pharmacol. 2017 Jan;83(1):172-179. doi: 10.1111/bcp.12976. Epub 2016 May 21. PMID: 27081765; PMCID: PMC5338162.

Marik PE. Is intravenous vitamin C contraindicated in patients with G6PD deficiency? Crit Care. 2019 Apr 3;23(1):109. doi: 10.1186/s13054-019-2397-6. PMID: 30944032; PMCID: PMC6448313.

Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med. 2020 Oct 7;161:84-91. doi: 10.1016/j.freeradbiomed.2020.10.002. Epub ahead of print. PMID: 33038530; PMCID: PMC7539020.

Duvignaud A, Lhomme E, Pistone T, Onaisi R, Sitta R, Journot V, Nguyen D, Peiffer-Smadja N, Crémer A, Bouchet S, Darnaud T, Poitrenaud D, Piroth L, Binquet C, Michel JF, Lefèvre B, Lebeaux D, Lebel J, Dupouy J, Roussillon C, Gimbert A, Wittkop L, Thiébaut R, Orne-Gliemann J, Joseph JP, Richert L, Anglaret X, Malvy D; COVERAGE study group. Home Treatment of Older People with Symptomatic SARS-CoV-2 Infection (COVID-19): A structured Summary of a Study Protocol for a Multi-Arm Multi-Stage (MAMS) Randomized Trial to Evaluate the Efficacy and Tolerability of Several Experimental Treatments to Reduce the Risk of Hospitalisation or Death in outpatients aged 65 years or older (COVERAGE trial). Trials. 2020 Oct 13;21(1):846. doi: 10.1186/s13063-020-04619-1. PMID: 33050924; PMCID: PMC7552584.

Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genom Med. 2020 Aug 18;5:35. doi: 10.1038/s41525-020-00143-y. PMID: 32864162; PMCID: PMC7435176.




DOI: https://doi.org/10.7575/aiac.abcmed.v.9n.4p.24

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2022 (CC-BY) Australian International Academic Centre PTY.LTD.

Advances in Bioscience and Clinical Medicine