Causes and Consequences of Nuclear Envelope Rupture and DNA Damage in Micronuclei
Abstract
Micronuclei are small, aberrant nuclear compartments containing mis-segregated chromosomes or chromosomal fragments. During telophase, dysfunctional micronuclear envelope reassembly leaves the micronuclear envelope highly unstable and rupture-prone. Following rupture, micronuclei attempt to repair membrane gaps, but the process is typically unsuccessful and may promote the invasion of ER tubules into the interior of micronuclei. These abnormalities cause ruptured micronuclei to accumulate significant DNA damage in the form of both single-stranded DNA and double-stranded breaks. Because micronuclei are capable of promoting genome instability, it is essential to understand the sources of DNA damage and the mechanism through which it arises in these structures. In this review, I will explore the causes and consequences of micronuclear envelope rupture, beginning with the processes surrounding improper micronuclear envelope reassembly. I will then discuss micronuclear envelope rupture, attempted micronuclear envelope repair and its consequences, and the proposed causes of micronuclear DNA damage.
Keywords
Full Text:
PDFReferences
Senior, A., & Gerace, L. (1988). Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. Journal of Cell Biology, 107(6), 2029–2036. https://doi.org/10.1083/jcb.107.6.2029
Zwerger, M., & Medalia, O. (2013). From lamins to lamina: A structural perspective. Histochemistry and Cell Biology, 140(1), 3–12. https://doi.org/10.1007/s00418-013-1104-y
Davies, B. S. J., Coffinier, C., Yang, S. H., Jung, H.-J., Fong, L. G., & Young, S. G. (2011). 3—Posttranslational Processing of Nuclear Lamins. In F. Tamanoi, C. A. Hrycyna, & M. O. Bergo (Eds.), The Enzymes (Vol. 29, pp. 21–41). Academic Press. https://doi.org/10.1016/B978-0-12-381339-8.00003-2
Gaillard, M.-C., & Reddy, K. L. (2018). 14—The Nuclear Lamina and Genome Organization. In C. Lavelle & J.-M. Victor (Eds.), Nuclear Architecture and Dynamics (Vol. 2, pp. 321–343). Academic Press. https://doi.org/10.1016/B978-0-12-803480-4.00014-4
Padiath, Q. S., & Fu, Y.-H. (2010). Chapter 14—Autosomal Dominant Leukodystrophy Caused by Lamin B1 Duplications: A Clinical and Molecular Case Study of Altered Nuclear Function and Disease. In G. V. Shivashankar (Ed.), Methods in Cell Biology (Vol. 98, pp. 337–357). Academic Press. https://doi.org/10.1016/S0091-679X(10)98014-X
Raices, M., & D’Angelo, M. A. (2012). Nuclear pore complex composition: A new regulator of tissue-specific and developmental functions. Nature Reviews. Molecular Cell Biology, 13(11), 687–699. https://doi.org/10.1038/nrm3461
Mudumbi, K. C., Schirmer, E. C., & Yang, W. (2016). Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nature Communications, 7(1), 12562. https://doi.org/10.1038/ncomms12562
Pawar, S., & Kutay, U. (2021). The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harbor Perspectives in Biology, a040477. https://doi.org/10.1101/cshperspect.a040477
Güttinger, S., Laurell, E., & Kutay, U. (2009). Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Reviews Molecular Cell Biology, 10(3), 178–191. https://doi.org/10.1038/nrm2641
Yang, L., Guan, T., & Gerace, L. (1997). Integral Membrane Proteins of the Nuclear Envelope Are Dispersed throughout the Endoplasmic Reticulum during Mitosis. Journal of Cell Biology, 137(6), 1199–1210. https://doi.org/10.1083/jcb.137.6.1199
Stick, R., Angres, B., Lehner, C. F., & Nigg, E. A. (1988). The fates of chicken nuclear lamin proteins during mitosis: Evidence for a reversible redistribution of lamin B2 between inner nuclear membrane and elements of the endoplasmic reticulum. Journal of Cell Biology, 107(2), 397–406. https://doi.org/10.1083/jcb.107.2.397
Bonassi, S., El-Zein, R., Bolognesi, C., & Fenech, M. (2011). Micronuclei frequency in peripheral blood lymphocytes and cancer risk: Evidence from human studies. Mutagenesis, 26(1), 93–100. https://doi.org/10.1093/mutage/geq075
Rao, X., Zhang, Y., Yi, Q., Hou, H., Xu, B., Chu, L., Huang, Y., Zhang, W., Fenech, M., & Shi, Q. (2008). Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 646(1), 41–49. https://doi.org/10.1016/j.mrfmmm.2008.09.004
Guo, X., Ni, J., Liang, Z., Xue, J., Fenech, M. F., & Wang, X. (2019). The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. Mutation Research/Reviews in Mutation Research, 779, 1–35. https://doi.org/10.1016/j.mrrev.2018.11.001
Liu, S., Kwon, M., Mannino, M., Yang, N., Renda, F., Khodjakov, A., & Pellman, D. (2018). Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature, 561(7724), 551–555. https://doi.org/10.1038/s41586-018-0534-z
Hatch, E. M., Fischer, A. H., Deerinck, T. J., & Hetzer, M. W. (2013). Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei. Cell, 154(1), 47–60. https://doi.org/10.1016/j.cell.2013.06.007
Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J., & de Lange, T. (2015). Chromothripsis and Kataegis Induced by Telomere Crisis. Cell, 163(7), 1641–1654. PubMed. https://doi.org/10.1016/j.cell.2015.11.054
Zhang, C.-Z., Spektor, A., Cornils, H., Francis, J. M., Jackson, E. K., Liu, S., Meyerson, M., & Pellman, D. (2015). Chromothripsis from DNA damage in micronuclei. Nature, 522(7555), 179–184. https://doi.org/10.1038/nature14493
Ly, P., Teitz, L. S., Kim, D. H., Shoshani, O., Skaletsky, H., Fachinetti, D., Page, D. C., & Cleveland, D. W. (2017). Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nature Cell Biology, 19(1), 68–75. https://doi.org/10.1038/ncb3450
Ly, P., Brunner, S. F., Shoshani, O., Kim, D. H., Lan, W., Pyntikova, T., Flanagan, A. M., Behjati, S., Page, D. C., Campbell, P. J., & Cleveland, D. W. (2019). Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nature Genetics, 51(4), 705–715. https://doi.org/10.1038/s41588-019-0360-8
Dou, Z., Ghosh, K., Vizioli, M. G., Zhu, J., Sen, P., Wangensteen, K. J., Simithy, J., Lan, Y., Lin, Y., Zhou, Z., Capell, B. C., Xu, C., Xu, M., Kieckhaefer, J. E., Jiang, T., Shoshkes-Carmel, M., Tanim, K. M. A. A., Barber, G. N., Seykora, J. T., … Berger, S. L. (2017). Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 550(7676), 402–406. https://doi.org/10.1038/nature24050
Li, T., & Chen, Z. J. (2018). The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. The Journal of Experimental Medicine, 215(5), 1287–1299. https://doi.org/10.1084/jem.20180139
Lin, F., & Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. Journal of Biological Chemistry, 268(22), 16321–16326. https://doi.org/10.1016/S0021-9258(19)85424-8
Maass, K. K., Rosing, F., Ronchi, P., Willmund, K. V., Devens, F., Hergt, M., Herrmann, H., Lichter, P., & Ernst, A. (2018). Altered nuclear envelope structure and proteasome function of micronuclei. Experimental Cell Research, 371(2), 353–363. https://doi.org/10.1016/j.yexcr.2018.08.029
Kneissig, M., Keuper, K., de Pagter, M. S., van Roosmalen, M. J., Martin, J., Otto, H., Passerini, V., Campos Sparr, A., Renkens, I., Kropveld, F., Vasudevan, A., Sheltzer, J. M., Kloosterman, W. P., & Storchova, Z. (2019). Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. ELife, 8, e50292. https://doi.org/10.7554/eLife.50292
Miyazaki, K., Ichikawa, Y., Saitoh, N., & Saitoh, H. (2020). Three Types of Nuclear Envelope Assemblies Associated with Micronuclei. CellBio, 9(1), 14–28. https://doi.org/10.4236/cellbio.2020.91002
Sepaniac, L. A., Martin, W., Dionne, L. A., Stearns, T. M., Reinholdt, L. G., & Stumpff, J. (2020). Micronuclei arising due to loss of KIF18A form stable micronuclear envelopes and do not promote tumorigenesis. BioRxiv, 2020.11.23.394924. https://doi.org/10.1101/2020.11.23.394924
Barton, L. J., Soshnev, A. A., & Geyer, P. K. (2015). Networking in the nucleus: A spotlight on LEM-domain proteins. Current Opinion in Cell Biology, 34, 1–8. https://doi.org/10.1016/j.ceb.2015.03.005
Wagner, N., & Krohne, G. (2007). LEM‐Domain Proteins: New Insights into Lamin‐Interacting Proteins. In International Review of Cytology (Vol. 261, pp. 1–46). Academic Press. https://doi.org/10.1016/S0074-7696(07)61001-8
Haraguchi, T., Koujin, T., Segura-Totten, M., Lee, K. K., Matsuoka, Y., Yoneda, Y., Wilson, K. L., & Hiraoka, Y. (2001). BAF is required for emerin assembly into the reforming nuclear envelope. Journal of Cell Science, 114(24), 4575–4585.
Halfmann, C. T., Sears, R. M., Katiyar, A., Busselman, B. W., Aman, L. K., Zhang, Q., O’Bryan, C. S., Angelini, T. E., Lele, T. P., & Roux, K. J. (2019). Repair of nuclear ruptures requires barrier-to-autointegration factor. Journal of Cell Biology, 218(7), 2136–2149. https://doi.org/10.1083/jcb.201901116
Young, A. M., Gunn, A. L., & Hatch, E. M. (2020). BAF facilitates interphase nuclear membrane repair through recruitment of nuclear transmembrane proteins. Molecular Biology of the Cell, 31(15), 1551–1560. https://doi.org/10.1091/mbc.E20-01-0009
Willan, J., Cleasby, A. J., Flores-Rodriguez, N., Stefani, F., Rinaldo, C., Pisciottani, A., Grant, E., Woodman, P., Bryant, H. E., & Ciani, B. (2019). ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis, 8(5), 1–14. https://doi.org/10.1038/s41389-019-0136-0
Haraguchi, T., Kojidani, T., Koujin, T., Shimi, T., Osakada, H., Mori, C., Yamamoto, A., & Hiraoka, Y. (2008). Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. Journal of Cell Science, 121(15), 2540–2554. https://doi.org/10.1242/jcs.033597
Dechat, T., Gajewski, A., Korbei, B., Gerlich, D., Daigle, N., Haraguchi, T., Furukawa, K., Ellenberg, J., & Foisner, R. (2004). LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. Journal of Cell Science, 117(25), 6117–6128. https://doi.org/10.1242/jcs.01529
Mayr, M. I., Hümmer, S., Bormann, J., Grüner, T., Adio, S., Woehlke, G., & Mayer, T. U. (2007). The Human Kinesin Kif18A Is a Motile Microtubule Depolymerase Essential for Chromosome Congression. Current Biology, 17(6), 488–498. https://doi.org/10.1016/j.cub.2007.02.036
Stumpff, J., Dassow, G. von, Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The Kinesin-8 Motor Kif18A Suppresses Kinetochore Movements to Control Mitotic Chromosome Alignment. Developmental Cell, 14(2), 252–262. https://doi.org/10.1016/j.devcel.2007.11.014
Afonso, O., Matos, I., Pereira, A. J., Aguiar, P., Lampson, M. A., & Maiato, H. (2014). Feedback control of chromosome separation by a midzone Aurora B gradient. Science, 345(6194), 332–336. https://doi.org/10.1126/science.1251121
de Castro, I. J., Gil, R. S., Ligammari, L., Giacinto, M. L. D., & Vagnarelli, P. (2017). CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget, 9(8), 7763–7773. https://doi.org/10.18632/oncotarget.23666
Hauf, S., Cole, R. W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C. L., & Peters, J.-M. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. Journal of Cell Biology, 161(2), 281–294. https://doi.org/10.1083/jcb.200208092
Carmena, M., Pinson, X., Platani, M., Salloum, Z., Xu, Z., Clark, A., MacIsaac, F., Ogawa, H., Eggert, U., Glover, D. M., Archambault, V., & Earnshaw, W. C. (2012). The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres. PLOS Biology, 10(1), e1001250. https://doi.org/10.1371/journal.pbio.1001250
Kurasawa, Y., Earnshaw, W. C., Mochizuki, Y., Dohmae, N., & Todokoro, K. (2004). Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. The EMBO Journal, 23(16), 3237–3248. https://doi.org/10.1038/sj.emboj.7600347
Fuller, B. G., Lampson, M. A., Foley, E. A., Rosasco-Nitcher, S., Le, K. V., Tobelmann, P., Brautigan, D. L., Stukenberg, P. T., & Kapoor, T. M. (2008). Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature, 453(7198), 1132–1136. https://doi.org/10.1038/nature06923
Hochegger, H., Hégarat, N., & Pereira-Leal, J. B. (n.d.). Aurora at the pole and equator: Overlapping functions of Aurora kinases in the mitotic spindle. Open Biology, 3(3), 120185. https://doi.org/10.1098/rsob.120185
Hu, C.-K., Coughlin, M., Field, C. M., & Mitchison, T. J. (2011). KIF4 Regulates Midzone Length during Cytokinesis. Current Biology, 21(10), 815–824. https://doi.org/10.1016/j.cub.2011.04.019
Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100
Nmezi, B., Xu, J., Fu, R., Armiger, T. J., Rodriguez-Bey, G., Powell, J. S., Ma, H., Sullivan, M., Tu, Y., Chen, N. Y., Young, S. G., Stolz, D. B., Dahl, K. N., Liu, Y., & Padiath, Q. S. (2019). Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proceedings of the National Academy of Sciences, 116(10), 4307–4315. https://doi.org/10.1073/pnas.1810070116
Harada, T., Swift, J., Irianto, J., Shin, J.-W., Spinler, K. R., Athirasala, A., Diegmiller, R., Dingal, P. C. D. P., Ivanovska, I. L., & Discher, D. E. (2014). Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. The Journal of Cell Biology, 204(5), 669–682. https://doi.org/10.1083/jcb.201308029
Vargas, J. D., Hatch, E. M., Anderson, D. J., & Hetzer, M. W. (2012). Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus, 3(1), 88–100. https://doi.org/10.4161/nucl.18954
Vietri, M., Schultz, S. W., Bellanger, A., Jones, C. M., Petersen, L. I., Raiborg, C., Skarpen, E., Pedurupillay, C. R. J., Kjos, I., Kip, E., Timmer, R., Jain, A., Collas, P., Knorr, R. L., Grellscheid, S. N., Kusumaatmaja, H., Brech, A., Micci, F., Stenmark, H., & Campsteijn, C. (2020). Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nature Cell Biology, 22(7), 856–867. https://doi.org/10.1038/s41556-020-0537-5
Mohr, L., Toufektchan, E., Chu, K., & Maciejowski, J. (2020). ER-directed TREX1 limits cGAS recognition of micronuclei. BioRxiv, 2020.05.18.102103. https://doi.org/10.1101/2020.05.18.102103
Denais, C. M., Gilbert, R. M., Isermann, P., McGregor, A. L., Lindert, M. te, Weigelin, B., Davidson, P. M., Friedl, P., Wolf, K., & Lammerding, J. (2016). Nuclear envelope rupture and repair during cancer cell migration. Science, 352(6283), 353–358. https://doi.org/10.1126/science.aad7297
Raab, M., Gentili, M., Belly, H. de, Thiam, H.-R., Vargas, P., Jimenez, A. J., Lautenschlaeger, F., Voituriez, R., Lennon-Duménil, A.-M., Manel, N., & Piel, M. (2016). ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science, 352(6283), 359–362. https://doi.org/10.1126/science.aad7611
Hatch, E. M., & Hetzer, M. W. (2016). Nuclear envelope rupture is induced by actin-based nucleus confinement. The Journal of Cell Biology, 215(1), 27–36. https://doi.org/10.1083/jcb.201603053
Umbreit, N. T., Zhang, C.-Z., Lynch, L. D., Blaine, L. J., Cheng, A. M., Tourdot, R., Sun, L., Almubarak, H. F., Judge, K., Mitchell, T. J., Spektor, A., & Pellman, D. (2020). Mechanisms generating cancer genome complexity from a single cell division error. Science, 368(6488), eaba0712. https://doi.org/10.1126/science.aba0712
Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W., & Görlich, D. (1997). Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. The EMBO Journal, 16(6), 1153–1163. https://doi.org/10.1093/emboj/16.6.1153
Fontes, M. R. M., Teh, T., & Kobe, B. (2000). Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α11Edited by K. Nagai. Journal of Molecular Biology, 297(5), 1183–1194. https://doi.org/10.1006/jmbi.2000.3642
Fornerod, M., Ohno, M., Yoshida, M., & Mattaj, I. W. (1997). CRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals. Cell, 90(6), 1051–1060. https://doi.org/10.1016/S0092-8674(00)80371-2
Güttler, T., Madl, T., Neumann, P., Deichsel, D., Corsini, L., Monecke, T., Ficner, R., Sattler, M., & Görlich, D. (2010). NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nature Structural & Molecular Biology, 17(11), 1367–1376. https://doi.org/10.1038/nsmb.1931
Askjaer, P., Bachi, A., Wilm, M., Bischoff, F. R., Weeks, D. L., Ogniewski, V., Ohno, M., Niehrs, C., Kjems, J., Mattaj, I. W., & Fornerod, M. (1999). RanGTP-Regulated Interactions of CRM1 with Nucleoporins and a Shuttling DEAD-Box Helicase. Molecular and Cellular Biology, 19(9), 6276–6285. https://doi.org/10.1128/MCB.19.9.6276
Barton, L. J., Wilmington, S. R., Martin, M. J., Skopec, H. M., Lovander, K. E., Pinto, B. S., & Geyer, P. K. (2014). Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila. Genetics, 197(2), 653–665. https://doi.org/10.1534/genetics.114.162941
Segura-Totten, M., Kowalski, A. K., Craigie, R., & Wilson, K. L. (2002). Barrier-to-autointegration factor. The Journal of Cell Biology, 158(3), 475–485. https://doi.org/10.1083/jcb.200202019
Jamin, A., Wicklund, A., & Wiebe, M. S. (2014). Cell- and Virus-Mediated Regulation of the Barrier-to-Autointegration Factor’s Phosphorylation State Controls Its DNA Binding, Dimerization, Subcellular Localization, and Antipoxviral Activity. Journal of Virology, 88(10), 5342–5355. https://doi.org/10.1128/JVI.00427-14
Nichols, R. J., Wiebe, M. S., & Traktman, P. (2006). The Vaccinia-related Kinases Phosphorylate the N′ Terminus of BAF, Regulating Its Interaction with DNA and Its Retention in the Nucleus. Molecular Biology of the Cell, 17(5), 2451–2464. https://doi.org/10.1091/mbc.E05-12-1179
Chen, Q., Sun, L., & Chen, Z. J. (2016). Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature Immunology, 17(10), 1142–1149. https://doi.org/10.1038/ni.3558
Mackenzie, K. J., Carroll, P., Martin, C.-A., Murina, O., Fluteau, A., Simpson, D. J., Olova, N., Sutcliffe, H., Rainger, J. K., Leitch, A., Osborn, R. T., Wheeler, A. P., Nowotny, M., Gilbert, N., Chandra, T., Reijns, M. A. M., & Jackson, A. P. (2017). CGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 548(7668), 461–465. https://doi.org/10.1038/nature23449
Zhao, B., Xu, P., Rowlett, C. M., Jing, T., Shinde, O., Lei, Y., West, A. P., Liu, W. R., & Li, P. (2020). The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature, 587(7835), 673–677. https://doi.org/10.1038/s41586-020-2749-z
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Peng, W., Zhang, M. Q., & Zhao, K. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40(7), 897–903. https://doi.org/10.1038/ng.154
Karmodiya, K., Krebs, A. R., Oulad-Abdelghani, M., Kimura, H., & Tora, L. (2012). H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics, 13(1), 424. https://doi.org/10.1186/1471-2164-13-424
Chen, Y., Maciejowski, (2021). [Precision of H3K9Ac nuclear envelope rupture detection]. Unpublished data.
Lovett, D. B., Shekhar, N., Nickerson, J. A., Roux, K. J., & Lele, T. P. (2013). Modulation of Nuclear Shape by Substrate Rigidity. Cellular and Molecular Bioengineering, 6(2), 230–238. https://doi.org/10.1007/s12195-013-0270-2
Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson, P. C., Hodzic, D., & Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. Proceedings of the National Academy of Sciences, 106(45), 19017–19022. https://doi.org/10.1073/pnas.0908686106
Earle, A. J., Kirby, T. J., Fedorchak, G. R., Isermann, P., Patel, J., Iruvanti, S., Moore, S. A., Bonne, G., Wallrath, L. L., & Lammerding, J. (2020). Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nature Materials, 19(4), 464–473. https://doi.org/10.1038/s41563-019-0563-5
Thomas, C. H., Collier, J. H., Sfeir, C. S., & Healy, K. E. (2002). Engineering gene expression and protein synthesis by modulation of nuclear shape. Proceedings of the National Academy of Sciences, 99(4), 1972–1977. https://doi.org/10.1073/pnas.032668799
Vergani, L., Grattarola, M., & Nicolini, C. (2004). Modifications of chromatin structure and gene expression following induced alterations of cellular shape. The International Journal of Biochemistry & Cell Biology, 36(8), 1447–1461. https://doi.org/10.1016/j.biocel.2003.11.015
Burke, B., & Roux, K. J. (2009). Nuclei Take a Position: Managing Nuclear Location. Developmental Cell, 17(5), 587–597. https://doi.org/10.1016/j.devcel.2009.10.018
Starr, D. A. (2011). Watching nuclei move. BioArchitecture, 1(1), 9–13. https://doi.org/10.4161/bioa.1.1.14629
Fridolfsson, H. N., & Starr, D. A. (2010). Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. Journal of Cell Biology, 191(1), 115–128. https://doi.org/10.1083/jcb.201004118
Bone, C. R., & Starr, D. A. (2016). Nuclear migration events throughout development. Journal of Cell Science, 129(10), 1951–1961. https://doi.org/10.1242/jcs.179788
Roman, W., & Gomes, E. R. (2018). Nuclear positioning in skeletal muscle. Seminars in Cell & Developmental Biology, 82, 51–56. https://doi.org/10.1016/j.semcdb.2017.11.005
Scheffer, L. L., Sreetama, S. C., Sharma, N., Medikayala, S., Brown, K. J., Defour, A., & Jaiswal, J. K. (2014). Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nature Communications, 5, 5646. https://doi.org/10.1038/ncomms6646
Isermann, P., & Lammerding, J. (2017). Consequences of a tight squeeze: Nuclear envelope rupture and repair. Nucleus, 8(3), 268–274. https://doi.org/10.1080/19491034.2017.1292191
Samwer, M., Schneider, M. W. G., Hoefler, R., Schmalhorst, P. S., Jude, J. G., Zuber, J., & Gerlich, D. W. (2017). DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes. Cell, 170(5), 956-972.e23. https://doi.org/10.1016/j.cell.2017.07.038
Gong, Y.-N., Guy, C., Olauson, H., Becker, J. U., Yang, M., Fitzgerald, P., Linkermann, A., & Green, D. R. (2017). ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell, 169(2), 286-300.e16. https://doi.org/10.1016/j.cell.2017.03.020
Sønder, S. L., Boye, T. L., Tölle, R., Dengjel, J., Maeda, K., Jäättelä, M., Simonsen, A. C., Jaiswal, J. K., & Nylandsted, J. (2019). Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43143-4
Thaller, D. J., Allegretti, M., Borah, S., Ronchi, P., Beck, M., & Lusk, C. P. (2019). An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. ELife, 8, e45284. https://doi.org/10.7554/eLife.45284
Gu, M., LaJoie, D., Chen, O. S., von Appen, A., Ladinsky, M. S., Redd, M. J., Nikolova, L., Bjorkman, P. J., Sundquist, W. I., Ullman, K. S., & Frost, A. (2017). LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proceedings of the National Academy of Sciences, 114(11), E2166. https://doi.org/10.1073/pnas.1613916114
Pieper, G. H., Sprenger, S., Teis, D., & Oliferenko, S. (2020). ESCRT-III/Vps4 Controls Heterochromatin-Nuclear Envelope Attachments. Developmental Cell, 53(1), 27-41.e6. https://doi.org/10.1016/j.devcel.2020.01.028
Lusk, C. P., & Ader, N. R. (2020). CHMPions of repair: Emerging perspectives on sensing and repairing the nuclear envelope barrier. Cell Nucleus, 64, 25–33. https://doi.org/10.1016/j.ceb.2020.01.011
Olmos, Y., & Carlton, J. (2016). The ESCRT machinery: New roles at new holes. Current Opinion in Cell Biology, 38, 1–11. https://doi.org/10.1016/j.ceb.2015.12.001
Shen, Q.-T., Schuh, A. L., Zheng, Y., Quinney, K., Wang, L., Hanna, M., Mitchell, J. C., Otegui, M. S., Ahlquist, P., Cui, Q., & Audhya, A. (2014). Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. Journal of Cell Biology, 206(6), 763–777. https://doi.org/10.1083/jcb.201403108
Shibata, Y., Voeltz, G. K., & Rapoport, T. A. (2006). Rough Sheets and Smooth Tubules. Cell, 126(3), 435–439. https://doi.org/10.1016/j.cell.2006.07.019
Terasaki, M. (2018). Axonal endoplasmic reticulum is very narrow. Journal of Cell Science, 131(4). https://doi.org/10.1242/jcs.210450
Olmos, Y., Hodgson, L., Mantell, J., Verkade, P., & Carlton, J. G. (2015). ESCRT-III controls nuclear envelope reformation. Nature, 522(7555), 236–239. https://doi.org/10.1038/nature14503
Penfield, L., Shankar, R., Szentgyörgyi, E., Laffitte, A., Mauro, M. S., Audhya, A., Müller-Reichert, T., & Bahmanyar, S. (2020). Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. Journal of Cell Biology, 219(e201908179). https://doi.org/10.1083/jcb.201908179
Bahmanyar, S., Biggs, R., Schuh, A. L., Desai, A., Müller-Reichert, T., Audhya, A., Dixon, J. E., & Oegema, K. (2014). Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes & Development, 28(2), 121–126.
Siniossoglou, S. (2013). Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(3), 575–581. https://doi.org/10.1016/j.bbalip.2012.09.014
Wolf, C., Rapp, A., Berndt, N., Staroske, W., Schuster, M., Dobrick-Mattheuer, M., Kretschmer, S., König, N., Kurth, T., Wieczorek, D., Kast, K., Cardoso, M. C., Günther, C., & Lee-Kirsch, M. A. (2016). RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nature Communications, 7(1), 11752. https://doi.org/10.1038/ncomms11752
Chowdhury, D., Beresford, P. J., Zhu, P., Zhang, D., Sung, J.-S., Demple, B., Perrino, F. W., & Lieberman, J. (2006). The Exonuclease TREX1 Is in the SET Complex and Acts in Concert with NM23-H1 to Degrade DNA during Granzyme A-Mediated Cell Death. Molecular Cell, 23(1), 133–142. https://doi.org/10.1016/j.molcel.2006.06.005
Yuan, F., Dutta, T., Wang, L., Song, L., Gu, L., Qian, L., Benitez, A., Ning, S., Malhotra, A., Deutscher, M. P., & Zhang, Y. (2015). Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA*. Journal of Biological Chemistry, 290(21), 13344–13353. https://doi.org/10.1074/jbc.M115.653915
Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., & Pellman, D. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482(7383), 53–58. https://doi.org/10.1038/nature10802
Tang, S., Pellman, D. (2020). [DNA damage in micronuclei requires APE1]. Unpublished data.
Dianov, G. L., Sleeth, K. M., Dianova, I. I., & Allinson, S. L. (2003). Repair of abasic sites in DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 531(1), 157–163. https://doi.org/10.1016/j.mrfmmm.2003.09.003
Cortés-Ciriano, I., Lee, J. J.-K., Xi, R., Jain, D., Jung, Y. L., Yang, L., Gordenin, D., Klimczak, L. J., Zhang, C.-Z., Pellman, D. S., & Park, P. J. (2020). Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics, 52(3), 331–341. https://doi.org/10.1038/s41588-019-0576-7
Barber, G. N. (2015). STING: Infection, inflammation and cancer. Nature Reviews Immunology, 15(12), 760–770. https://doi.org/10.1038/nri3921
Savitsky, D., Tamura, T., Yanai, H., & Taniguchi, T. (2010). Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunology, Immunotherapy: CII, 59(4), 489–510. https://doi.org/10.1007/s00262-009-0804-6
Xia, Y., Shen, S., & Verma, I. M. (2014). NF-κB, an active player in human cancers. Cancer Immunology Research, 2(9), 823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112
DOI: https://doi.org/10.7575/aiac.abcmed.v.9n.4p.12
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
2013-2023 (CC-BY) Australian International Academic Centre PTY.LTD.
Advances in Bioscience and Clinical Medicine