The Therapeutic Potential of Resveratrol in Gliomas
Abstract
Keywords
Full Text:
PDFReferences
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer research, 2004, 24(5A), 2783-2840.
Ahn, J.-H.; Choi, Y.S.; Choi, J.-H. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. MHR: Basic science of reproductive medicine, 2015, 21(10), 792-802.
Alberdi, E.; Sánchez-Gómez, M.V.; Matute, C. Calcium and glial cell death. Cell calcium, 2005, 38(3-4), 417-425.
Anastasiadis, P.Z.; Jiang, H.; Bezin, L.; Kuhn, D.M.; Levine, R.A. Tetrahydrobiopterin enhances apoptotic PC12 cell death following withdrawal of trophic support. Journal of Biological Chemistry, 2001, 276(12), 9050-9058.
Balkwill, F. TNF-α in promotion and progression of cancer. Cancer and Metastasis Reviews, 2006, 25(3), 409.
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756.
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nature reviews Drug discovery, 2006, 5(6), 493.
Bertelli, A.; Bertelli, A.; Gozzini, A.; Giovannini, L. Plasma and tissue resveratrol concentrations and pharmacological activity. Drugs under experimental and clinical research, 1998, 24(3), 133-138.
Bertl, E.; Bartsch, H.; Gerhäuser, C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Molecular cancer therapeutics, 2006, 5(3), 575-585.
Beskow, C.; Skikuniene, J.; Holgersson, Å.; Nilsson, B.; Lewensohn, R.; Kanter, L.; Viktorsson, K. Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. British journal of cancer, 2009, 101(5), 816.
Brantley, E.C.; Benveniste, E.N. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Molecular Cancer Research, 2008, 6(5), 675-684.
Brem, S.; Cotran, R.; Folkman, J. Tumor angiogenesis: a quantitative method for histologic grading. Journal of the National Cancer Institute, 1972, 48(2), 347-356.
Bromberg, J. Stat proteins and oncogenesis. The Journal of clinical investigation, 2002, 109(9), 1139-1142.
Bromberg, J.; Darnell, J.E. The role of STATs in transcriptional control and their impact on cellular function. Oncogene, 2000, 19(21), 2468.
Brown, L.; Kroon, P.A.; Das, D.K.; Das, S.; Tosaki, A.; Chan, V.; Singer, M.V.; Feick, P. The biological responses to resveratrol and other polyphenols from alcoholic beverages. Alcoholism: Clinical and Experimental Research, 2009, 33(9), 1513-1523.
Castagne, V.; Gautschi, M.; Lefevre, K.; Posada, A.; Clarke, P.G. Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Progress in neurobiology, 1999, 59(4), 397-423.
Chakraborty, S.; Roy, M.; Bhattacharya, R.K. Prevention and repair of DNA damage by selected phytochemicals as measured by single cell gel electrophoresis. Journal of environmental pathology, toxicology and oncology, 2004, 23(3).
Chang, H.-C.; Tai, Y.-T.; Cherng, Y.-G.; Lin, J.-W.; Liu, S.-H.; Chen, T.-L.; Chen, R.-M. Resveratrol attenuates high-fat diet-induced disruption of the blood–brain barrier and protects brain neurons from apoptotic insults. Journal of agricultural and food chemistry, 2014, 62(15), 3466-3475.
Chelsky, Z.L.; Yue, P.; Kondratyuk, T.P.; Paladino, D.; Pezzuto, J.M.; Cushman, M.; Turkson, J. A Resveratrol Analogue Promotes ERKMAPK–Dependent Stat3 Serine and Tyrosine Phosphorylation Alterations and Antitumor Effects In Vitro against Human Tumor Cells. Molecular pharmacology, 2015, 88(3), 524-533.
Choi, S.; Singh, S.V. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable–derived cancer chemopreventive agent. Cancer research, 2005, 65(5), 2035-2043.
Chun, Y.J.; Kim, M.Y.; Guengerich, F.P. Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochemical and biophysical research communications, 1999, 262(1), 20-24.
Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. Journal of neurosurgery, 2016, 126(5), 1448-1460.
Conte, A.; Pellegrini, S.; Tagliazucchi, D. Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity. Drugs under experimental and clinical research, 2003, 29(5-6), 243-255.
Couldwell, W.T.; Uhm, J.H.; Antel, J.P.; Yong, V.W. Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery, 1991, 29(6), 880-887.
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860.
Cuervo, A.M. Autophagy: in sickness and in health. Trends in cell biology, 2004, 14(2), 70-77.
Dai, Z.; Li, Y.; Quarles, L.; Song, T.; Pan, W.; Zhou, H.; Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine, 2007, 14(12), 806-814.
Dang, C.V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and cellular biology, 1999, 19(1), 1-11.
Dao, T.T.; Ha, D.T.; Hien, T.T.; Binh, B.T.; Phuong, T.T.; Long, P.T.; Thu, N.B.; Que, D.T.N.; Khoi, N.M.; Dung, L.V. Resveratrol suppressed lps-induced cox-2 VIA miR-146a-5p inhibition in raw246. 7 cells. Farmacia, 2017, 65(2), 214-218.
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell, 2006, 10(1), 51-64.
Desagher, S.; Glowinski, J.; Premont, J. Astrocytes protect neurons from hydrogen peroxide toxicity. Journal of Neuroscience, 1996, 16(8), 2553-2562.
Dobrzynska, M. Resveratrol as promising natural radioprotector. A review. Roczniki Państwowego Zakładu Higieny, 2013, 64(4).
dos Santos, A.Q.; Nardin, P.; Funchal, C.; de Almeida, L.M.V.; Jacques-Silva, M.C.; Wofchuk, S.T.; Gonçalves, C.-A.; Gottfried, C. Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Archives of Biochemistry and Biophysics, 2006, 453(2), 161-167.
Dringen, R. Glutathione metabolism and oxidative stress in neurodegeneration. The FEBS Journal, 2000, 267(16), 4903-4903.
Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione metabolism in brain. The FEBS Journal, 2000, 267(16), 4912-4916.
Dudley, J.; Das, S.; Mukherjee, S.; Das, D.K. RETRACTED: Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose. In; Elsevier; 2009.
Dutta, D.; Xu, J.; Dirain, M.L.; Leeuwenburgh, C. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radical Biology and Medicine, 2014, 74, 252-262.
Fimognari, C.; Hrelia, P. Sulforaphane as a promising molecule for fighting cancer. Mutation Research/Reviews in Mutation Research, 2007, 635(2), 90-104.
Firouzi, F.; Khoei, S.; Mirzaei, H.R. Role of resveratrol on the cytotoxic effects and DNA damages of iododeoxyuridine and megavoltage radiation in spheroid culture of U87MG glioblastoma cell line. Gen Physiol Biophys, 2015, 34, 43-50.
Folgueras, A.R.; Pendas, A.M.; Sanchez, L.M.; Lopez-Otin, C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. International Journal of Developmental Biology, 2004, 48(5-6), 411-424.
Forsyth, P.; Wong, H.; Laing, T.; Rewcastle, N.; Morris, D.; Muzik, H.; Leco, K.; Johnston, R.; Brasher, P.; Sutherland, G. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. British journal of cancer, 1999, 79(11-12), 1828.
Fremont, L. Biological effects of resveratrol. Life sciences, 2000, 66(8), 663-673.
Friedlander, M.; Brooks, P.C.; Shaffer, R.W.; Kincaid, C.M.; Varner, J.A.; Cheresh, D.A. Definition of two angiogenic pathways by distinct αv integrins. Science, 1995, 270(5241), 1500-1502.
Gagliano, N.; Aldini, G.; Colombo, G.; Rossi, R.; Colombo, R.; Gioia, M.; Milzani, A.; Dalle-Donne, I. The potential of resveratrol against human gliomas. Anti-cancer drugs, 2010, 21(2), 140-150.
Gagliano, N.; Moscheni, C.; Torri, C.; Magnani, I.; Bertelli, A.A.; Gioia, M. Effect of resveratrol on matrix metalloproteinase-2 (MMP-2) and Secreted Protein Acidic and Rich in Cysteine (SPARC) on human cultured glioblastoma cells. Biomedicine & pharmacotherapy, 2005, 59(7), 359-364.
Gagliano, N.; Moscheni, C.; Torri, C.; Magnani, I.; Nowicky, W.; Gioia, M. Matrix metalloproteinase 2 (MMP-2) and secreted protein acidic and rich in cysteine (SPARC) expression in human glioblastoma cells treated with Ukrain: Forum of European Neuroscience, 2006; null.
Gao, X.; Xu, Y.X.; Divine, G.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. The Journal of nutrition, 2002, 132(7), 2076-2081.
Gilbert, M.R.; Friedman, H.S.; Kuttesch, J.F.; Prados, M.D.; Olson, J.J.; Reaman, G.H.; Zaknoen, S.L. A phase II study of temozolomide in patients with newly diagnosed supratentorial malignant glioma before radiation therapy. Neuro-oncology, 2002, 4(4), 261-267.
Guillet, B.; Velly, L.; Canolle, B.; Masmejean, F.; Nieoullon, A.; Pisano, P. Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int, 2005, 46(4), 337-346.
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews, 2005, 57(2), 173-185.
Huang, C.; Ma, W.-y.; Goranson, A.; Dong, Z. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis, 1999, 20(2), 237-242.
Huang, H.; Lin, H.; Zhang, X.; Li, J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncology reports, 2012, 27(6), 2050-2056.
Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends in neurosciences, 2001, 24(12), 719-725.
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
Jiang, H.; Movsesyan, V.; Fink Jr, D.W.; Fasler, M.; Whalin, M.; Katagiri, Y.; Monshipouri, M.; Dickens, G.; Lelkes, P.I.; Guroff, G. Expression of human p140trk receptors in p140trk‐deficient, PC12/endothelial cells results in nerve growth factor‐induced signal transduction and DNA synthesis. Journal of cellular biochemistry, 1997, 66(2), 229-244.
Jiang, H.; Shang, X.; Wu, H.; Huang, G.; Wang, Y.; Al-Holou, S.; Gautam, S.C.; Chopp, M. Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochemical research, 2010, 35(1), 152.
Jiang, H.; Zhang, L.; Kuo, J.; Kuo, K.; Gautam, S.C.; Groc, L.; Rodriguez, A.I.; Koubi, D.; Hunter, T.J.; Corcoran, G.B. Resveratrol-induced apoptotic death in human U251 glioma cells. Molecular cancer therapeutics, 2005, 4(4), 554-561.
Jin, Y.H.; Yoo, K.J.; Lee, Y.H.; Lee, S.K. Caspase 3-mediated cleavage of p21 WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. Journal of Biological Chemistry, 2000, 275(39), 30256-30263.
Joe, A.K.; Liu, H.; Suzui, M.; Vural, M.E.; Xiao, D.; Weinstein, I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical Cancer Research, 2002, 8(3), 893-903.
Jung, C.H.; Ro, S.-H.; Cao, J.; Otto, N.M.; Kim, D.-H. mTOR regulation of autophagy. FEBS letters, 2010, 584(7), 1287-1295.
Junhong Li, C.L., Seidu A. Richard, Yanhui Liu. Giant solitary primary intracranial lymphoma masquerading as meningioma: a case and review of literature. Pan African Medical Journal, 2017, 28(196).
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal, 2000, 19(21), 5720-5728.
Karmakar, S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neuroscience letters, 2006, 407(1), 53-58.
Khoei, S.; Shoja, M.; Mostaar, A.; Faeghi, F. Effects of resveratrol and methoxyamine on the radiosensitivity of iododeoxyuridine in U87MG glioblastoma cell line. Experimental Biology and Medicine, 2016, 241(11), 1229-1236.
Kim, Y.; Lim, S.-Y.; Rhee, S.-H.; Park, K.Y.; Kim, C.-H.; Choi, B.T.; Lee, S.J.; Park, Y.-M.; Choi, Y.H. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in β-amyloid-treated C6 glioma cells. International journal of molecular medicine, 2006, 17(6), 1069-1075.
Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. The Journal of nutrition, 2001, 131(6), 1844-1849.
Kimura, Y.; Okuda, H.; Kubo, M. Effects of stilbenes isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes. Journal of ethnopharmacology, 1995, 45(2), 131-139.
Kotha, A.; Sekharam, M.; Cilenti, L.; Siddiquee, K.; Khaled, A.; Zervos, A.S.; Carter, B.; Turkson, J.; Jove, R. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Molecular cancer therapeutics, 2006, 5(3), 621-629.
Kuo, P.-L.; Chiang, L.-C.; Lin, C.-C. Resveratrol-induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells. Life sciences, 2002, 72(1), 23-34.
Leone, S.; Fiore, M.; Lauro, M.G.; Pino, S.; Cornetta, T.; Cozzi, R. Resveratrol and X rays affect gap junction intercellular communications in human glioblastoma cells. Molecular carcinogenesis, 2008, 47(8), 587-598.
Levkau, B.; Koyama, H.; Raines, E.W.; Clurman, B.E.; Herren, B.; Orth, K.; Roberts, J.M.; Ross, R. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Molecular cell, 1998, 1(4), 553-563.
Li, J.; Qin, Z.; Liang, Z. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer, 2009, 9(1), 215.
Lin, H.; Wang, Y.; Zhang, X.; Liu, B.; Zhang, W.; Cheng, J. Prognostic significance of kappaB-Ras1 expression in gliomas. Medical Oncology, 2012, 29(2), 1272-1279.
Lin, H.; Xiong, W.; Zhang, X.; Liu, B.; Zhang, W.; Zhang, Y.; Cheng, J.; Huang, H. Notch-1 activation-dependent p53 restoration contributes to resveratrol-induced apoptosis in glioblastoma cells. Oncology reports, 2011, 26(4), 925-930.
Lin, H.-Y.; Shih, A.; Davis, F.B.; Tang, H.-Y.; Martino, L.J.; Bennett, J.A.; Davis, P.J. Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. The Journal of urology, 2002, 168(2), 748-755.
Lin, H.-Y.; Tang, H.-Y.; Keating, T.; Wu, Y.-H.; Shih, A.; Hammond, D.; Sun, M.; Hercbergs, A.; Davis, F.B.; Davis, P.J. Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis, 2007, 29(1), 62-69.
Lomonaco, S.L.; Finniss, S.; Xiang, C.; DeCarvalho, A.; Umansky, F.; Kalkanis, S.N.; Mikkelsen, T.; Brodie, C. The induction of autophagy by γ‐radiation contributes to the radioresistance of glioma stem cells. International journal of cancer, 2009, 125(3), 717-722.
Ma, C.; Wang, Y.; Dong, L.; Li, M.; Cai, W. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta biochimica et biophysica Sinica, 2015, 47(3), 207-213.
Maeda, T.; Hobbs, R.M.; Merghoub, T.; Guernah, I.; Zelent, A.; Cordon-Cardo, C.; Teruya-Feldstein, J.; Pandolfi, P.P. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 2005, 433(7023), 278.
Mahyar‐Roemer, M.; Katsen, A.; Mestres, P.; Roemer, K. Resveratrol induces colon tumor cell apoptosis independently of p53 and precede by epithelial differentiation, mitochondrial proliferation and membrane potential collapse. International journal of cancer, 2001, 94(5), 615-622.
Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. The Journal of Immunology, 2000, 164(12), 6509-6519.
Manton, K.G.; Volovik, S.; Kulminski, A. ROS effects on neurodegeneration in Alzheimer's disease and related disorders: on environmental stresses of ionizing radiation. Current Alzheimer Research, 2004, 1(4), 277-293.
Marshall, C. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995, 80(2), 179-185.
Matsuura, E.; Hughes, G.R.; Khamashta, M.A. Oxidation of LDL and its clinical implication. Autoimmunity reviews, 2008, 7(7), 558-566.
Miklossy, G.; Hilliard, T.S.; Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nature reviews Drug discovery, 2013, 12(8), 611.
Morelli, R.; Das, S.; Bertelli, A.; Bollini, R.; Scalzo, R.L.; Das, D.; Falchi, M. The introduction of the stilbene synthase gene enhances the natural antiradical activity of Lycopersicon esculentum mill. Molecular and cellular biochemistry, 2006, 282(1-2), 65-73.
Morris, G.Z.; Williams, R.L.; Elliott, M.S.; Beebe, S.J. Resveratrol induces apoptosis in LNCaP cells and requires hydroxyl groups to decrease viability in LNCaP and DU 145 cells. The Prostate, 2002, 52(4), 319-329.
Morrison, D.J.; Pendergrast, P.S.; Stavropoulos, P.; Colmenares, S.U.; Kobayashi, R.; Hernandez, N. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein. Nucleic acids research, 1999, 27(5), 1251-1262.
Mukherjee, S.; Dudley, J.I.; Das, D.K. Dose-dependency of resveratrol in providing health benefits. Dose-Response, 2010, 8(4), dose-response. 09-015. Mukherjee.
Nakada, M.; Okada, Y.; Yamashita, J. The role of matrix metalloproteinases in glioma invasion. Frontiers in bioscience: a journal and virtual library, 2003, 8, e261-269.
Ng, D.C.H.; Lin, B.H.; Lim, C.P.; Huang, G.; Zhang, T.; Poli, V.; Cao, X. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol, 2006, 172(2), 245-257.
Niles, R.M.; Cook, C.P.; Meadows, G.G.; Fu, Y.-M.; McLaughlin, J.L.; Rankin, G.O. Resveratrol is rapidly metabolized in athymic (nu/nu) mice and does not inhibit human melanoma xenograft tumor growth. The Journal of nutrition, 2006, 136(10), 2542-2546.
Ono, K.; Han, J. The p38 signal transduction pathway activation and function. Cellular signalling, 2000, 12(1), 1-13.
Ovesna, Z.; Horvathova-Kozics, K. Structure-activity relationship of trans-resveratrol and its analogues. Neoplasma, 2005, 52(6), 450.
Pan, G.; Thomson, J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell research, 2007, 17(1), 42.
Park, D.S.; Morris, E.J.; Greene, L.A.; Geller, H.M. G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. Journal of Neuroscience, 1997, 17(4), 1256-1270.
Park, J.-W.; Choi, Y.-J.; Suh, S.-I.; Baek, W.-K.; Suh, M.-H.; Jin, I.-N.; Min, D.S.; Woo, J.-H.; Chang, J.-S.; Passaniti, A. Bcl-2 overexpression attenuates resveratrol-induced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis, 2001, 22(10), 1633-1639.
Pervaiz, S. Resveratrol: from grapevines to mammalian biology. The FASEB Journal, 2003, 17(14), 1975-1985.
Plate, K.H.; Breier, G.; Weich, H.A.; Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 1992, 359(6398), 845.
Rao, J.S. Molecular mechanisms of glioma invasiveness: the role of proteases. Nature Reviews Cancer, 2003, 3(7), 489.
Rego, A.C.; Oliveira, C.R. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochemical research, 2003, 28(10), 1563-1574.
Rich, J.N.; Hans, C.; Jones, B.; Iversen, E.S.; McLendon, R.E.; Rasheed, B.A.; Dobra, A.; Dressman, H.K.; Bigner, D.D.; Nevins, J.R. Gene expression profiling and genetic markers in glioblastoma survival. Cancer research, 2005, 65(10), 4051-4058.
Richard S.A, X.L.-H., Yun J.-X., Shanshan Z, Jiang Y.-Y, Wang J,; Su Z.-L, X.H.-X. Carcinogenic and therapeutic role of High-Mobility Group Box 1 in Cancer: is it a cancer facilitator, a cancer inhibitor or both? World Cancer Research Journal, 2017, 4(3), e919.
Richard, S.A.; Jiang, Y.; Xiang, L.H.; Zhou, S.; Wang, J.; Su, Z.; Xu, H. Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res, 2017, 9(12), 5181-5196.
Richard, S.A.; Liang, R.F.; Lei, C.F.; Liu, Y.H. Diffuse leptomeningeal tuberculoma masquerading as leptomeningeal gliomatosis: a case report and review of literature. Infectious Diseases & Tropical Medicine, 2017, 3(3), e406.
Richard, S.A.; Ma, L.; Li, H.; Li, J.; You, C. Giant intradural cervical spine arteriovenous malformations–A case and review of literature. Neurologia i neurochirurgia polska, 2018.
Richard, S.A.; Min, W.; Su, Z.; Xu, H. High Mobility Group Box 1 and Traumatic Brain Injury. Journal of Behavioral and Brain Science, 2017, 7(02), 50.
Richard, S.A.; Min, W.; Su, Z.; Xu, H.-X. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS Molecular Science, 2017, 4(2), 185-218.
Richard, S.A.; Sackey, M.; Su, Z.; Xu, H. Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Bioscience reports, 2017.
Richard, S.A.; Tampouri, J.; Sackey, M.; Zakariah, A.N. Human immunodeficiency virus and cerebrovascular diseases–review. HIV & AIDS Review, 2017, 16(4).
Richard, S.A.; Zheng, S.; Su, Z.; Gao, J.; Xu, H. The Pivotal Neuroinflammatory, Therapeutic and Neuroprotective Role of Alpha-Mangostin. Journal of Neurology Research, 2017, 7(4-5), 67-79.
Risau, W. Mechanisms of angiogenesis. Nature, 1997, 386(6626), 671.
Ryu, J.; Ku, B.M.; Lee, Y.K.; JEONG, J.Y.; Kang, S.; Choi, J.; Yang, Y.; Lee, D.H.; Roh, G.S.; Kim, H.J. Resveratrol reduces TNF-α-induced U373MG human glioma cell invasion through regulating NF-κB activation and uPA/uPAR expression. Anticancer research, 2011, 31(12), 4223-4230.
Sato, A.; Okada, M.; Shibuya, K.; Watanabe, E.; Seino, S.; Suzuki, K.; Narita, Y.; Shibui, S.; Kayama, T.; Kitanaka, C. Resveratrol promotes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells. Stem cell research, 2013, 11(1), 601-610.
Sato, H.; Kita, M.; Seiki, M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. Journal of Biological Chemistry, 1993, 268(31), 23460-23468.
Sato, H.; Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene, 1993, 8(2), 395-405.
Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 1994, 370(6484), 61.
Schultz, C.; Lemke, N.; Ge, S.; Golembieski, W.A.; Rempel, S.A. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer research, 2002, 62(21), 6270-6277.
Schulz, C.A.; Mehta, M.P.; Badie, B.; McGinn, C.J.; Robins, H.I.; Hayes, L.; Chappell, R.; Volkman, J.; Binger, K.; Arzoomanian, R. Continuous 28-day iododeoxyuridine infusion and hyperfractionated accelerated radiotherapy for malignant glioma: a phase I clinical study. International Journal of Radiation Oncology• Biology• Physics, 2004, 59(4), 1107-1115.
Schütz, A.; Röser, K.; Klitzsch, J.; Lieder, F.; Aberger, F.; Gruber, W.; Mueller, K.M.; Pupyshev, A.; Moriggl, R.; Friedrich, K. Lung adenocarcinomas and lung cancer cell lines show association of MMP-1 expression with STAT3 activation. Translational oncology, 2015, 8(2), 97-105.
Seidu, R.A.; Wu, M.; Su, Z.; Xu, H. Paradoxical role of high mobility group box 1 in glioma: a suppressor or a promoter? Oncology Reviews, 2017, 11(1).
Sharma, G.M. Hypoxia inducible factor-1α (HIF-1 α) and its role in tumour progression to malignancy. Online Journal of Health and Allied Sciences, 2008, 7(2).
She, Q.-B.; Bode, A.M.; Ma, W.-Y.; Chen, N.-Y.; Dong, Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer research, 2001, 61(4), 1604-1610.
Shi, Q.; Bao, S.; Maxwell, J.A.; Reese, E.D.; Friedman, H.S.; Bigner, D.D.; Wang, X.-F.; Rich, J.N. Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. Journal of Biological Chemistry, 2004, 279(50), 52200-52209.
Shi, Q.; Bao, S.; Song, L.; Wu, Q.; Bigner, D.; Hjelmeland, A.; Rich, J. Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 2007, 26(28), 4084.
Shindler, K.S.; Ventura, E.; Dutt, M.; Elliott, P.; Fitzgerald, D.C.; Rostami, A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. Journal of Neuro-Ophthalmology, 2010, 30(4), 328.
Shishodia, S.; Koul, D.; Aggarwal, B.B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-κB activation through inhibition of activation of IκBα kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. The Journal of Immunology, 2004, 173(3), 2011-2022.
Singh, N.P.; Hegde, V.L.; Hofseth, L.J.; Nagarkatti, M.; Nagarkatti, P. Resveratrol (trans-3, 5, 4′-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Molecular pharmacology, 2007, 72(6), 1508-1521.
Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: a molecule whose time has come? And gone? Clinical biochemistry, 1997, 30(2), 91-113.
Soroceanu, L.; Manning, T.J.; Sontheimer, H. Reduced expression of connexin‐43 and functional gap junction coupling in human gliomas. Glia, 2001, 33(2), 107-117.
Stojic, J.; Hagemann, C.; Haas, S.; Herbold, C.; Kühnel, S.; Gerngras, S.; Roggendorf, W.; Roosen, K.; Vince, G.H. Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neuroscience research, 2008, 60(1), 40-49.
Su, Z.; Ni, P.; She, P.; Liu, Y.; Richard, S.A.; Xu, W.; Zhu, H.; Wang, J. Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunology, Immunotherapy, 2017, 66(3), 391-401.
Subbaramaiah, K.; Chung, W.J.; Michaluart, P.; Telang, N.; Tanabe, T.; Inoue, H.; Jang, M.; Pezzuto, J.M.; Dannenberg, A.J. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. Journal of Biological Chemistry, 1998, 273(34), 21875-21882.
Sun, C.-y.; Hu, Y.; Guo, T.; Wang, H.-f.; Zhang, X.-p.; He, W.-j.; Tan, H. Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity. Acta pharmacologica Sinica, 2006, 27(11), 1447.
Takuma, K.; Baba, A.; Matsuda, T. Astrocyte apoptosis: implications for neuroprotection. Progress in neurobiology, 2004, 72(2), 111-127.
Tang, H.-Y.; Shih, A.; Cao, H.J.; Davis, F.B.; Davis, P.J.; Lin, H.-Y. Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Molecular cancer therapeutics, 2006, 5(8), 2034-2042.
Trung, L.Q.; Espinoza, J.L.; Takami, A.; Nakao, S. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One, 2013, 8(1), e55183.
Tseng, S.-H.; Lin, S.-M.; Chen, J.-C.; Su, Y.-H.; Huang, H.-Y.; Chen, C.-K.; Lin, P.-Y.; Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clinical Cancer Research, 2004, 10(6), 2190-2202.
Tsujimoto, M.; Yip, Y.; Vilcek, J. Tumor necrosis factor: specific binding and internalization in sensitive and resistant cells. Proceedings of the National Academy of Sciences, 1985, 82(22), 7626-7630.
Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutrition reviews, 2008, 66(8), 445-454.
Van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clinical Cancer Research, 2007, 13(17), 5162-5169.
Vidavalur, R.; Otani, H.; Singal, P.K.; Maulik, N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Experimental & Clinical Cardiology, 2006, 11(3), 217.
Vihinen, P.; Ala-aho, R.; Kahari, V.-M. Matrix metalloproteinases as therapeutic targets in cancer. Current cancer drug targets, 2005, 5(3), 203-220.
Vitaglione, P.; Sforza, S.; Galaverna, G.; Ghidini, C.; Caporaso, N.; Vescovi, P.P.; Fogliano, V.; Marchelli, R. Bioavailability of trans‐resveratrol from red wine in humans. Molecular nutrition & food research, 2005, 49(5), 495-504.
Von Marschall, Z.; Cramer, T.; Höcker, M.; Burde, R.; Plath, T.; Schirner, M.; Heidenreich, R.; Breier, G.; Riecken, E.O.; Wiedenmann, B. De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology, 2000, 119(5), 1358-1372.
Wallach, D.; Varfolomeev, E.; Malinin, N.; Goltsev, Y.V.; Kovalenko, A.; Boldin, M. Tumor necrosis factor receptor and Fas signaling mechanisms. Annual review of immunology, 1999, 17(1), 331-367.
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug metabolism and disposition, 2004, 32(12), 1377-1382.
Wang, D.; Li, S.-P.; Fu, J.-S.; Zhang, S.; Bai, L.; Guo, L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. Journal of neurophysiology, 2016, 116(5), 2173-2179.
Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. International journal of oncology, 2015, 46(4), 1739-1747.
Wang, H.; Feng, H.; Zhang, Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis. Neoplasma, 2016, 63(4), 532-539.
Wang, L.; Long, L.; Wang, W.; Liang, Z. Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo. Journal of pharmacological sciences, 2015, 129(4), 216-225.
Wang, M.; Huang, H.; Hsieh, S.; Jeng, K.; Kuo, J. Resveratrol inhibits interleukin-6 production in cortical mixed glial cells under hypoxia/hypoglycemia followed by reoxygenation. Journal of neuroimmunology, 2001, 112(1), 28-34.
Wang, M.; Wang, T.; Liu, S.; Yoshida, D.; Teramoto, A. The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades. Brain tumor pathology, 2003, 20(2), 65-72.
Wang, Q.; Xu, J.; Rottinghaus, G.E.; Simonyi, A.; Lubahn, D.; Sun, G.Y.; Sun, A.Y. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain research, 2002, 958(2), 439-447.
Weidner, N.; Folkman, J.; Pozza, F.; Bevilacqua, P.; Allred, E.N.; Moore, D.H.; Meli, S.; Gasparini, G. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. JNCI: Journal of the National Cancer Institute, 1992, 84(24), 1875-1887.
Weisburger, J.H. Carcinogenicity and mutagenicity testing, then and now. Mutation Research/Reviews in Mutation Research, 1999, 437(2), 105-112.
Wenzel, E.; Somoza, V. Metabolism and bioavailability of trans‐resveratrol. Molecular nutrition & food research, 2005, 49(5), 472-481.
Williams, J.R.; Zhang, Y.; Zhou, H.; Gridley, D.S.; Koch, C.J.; Slater, J.M.; Little, J.B. Overview of radiosensitivity of human tumor cells to low-dose-rate irradiation. International Journal of Radiation Oncology• Biology• Physics, 2008, 72(3), 909-917.
Wolburg, H.; Lippoldt, A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular pharmacology, 2002, 38(6), 323-337.
Wolter, F.; Akoglu, B.; Clausnitzer, A.; Stein, J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. The Journal of nutrition, 2001, 131(8), 2197-2203.
Woo, J.-H.; Lim, J.H.; Kim, Y.-H.; Suh, S.-I.; Chang, J.-S.; Lee, Y.H.; Park, J.-W.; Kwon, T.K. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC δ signal transduction. Oncogene, 2004, 23(10), 1845.
Xu, W.; Lu, Y.; Yao, J.; Li, Z.; Chen, Z.; Wang, G.; Jing, H.; Zhang, X.; Li, M.; Peng, J. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury. Shock, 2014, 42(5), 440-447.
Yang, C.S.; Landau, J.M.; Huang, M.-T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual review of nutrition, 2001, 21(1), 381-406.
Yang, Y.; Cui, J.; Xue, F.; Overstreet, A.-M.; Zhan, Y.; Shan, D.; Li, H.; Wang, Y.; Zhang, M.; Yu, C. Resveratrol represses pokemon expression in human glioma cells. Molecular neurobiology, 2016, 53(2), 1266-1278.
Yu, H.; Jove, R. The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer, 2004, 4(2), 97.
Yu, L.; Alva, A.; Su, H.; Dutt, P.; Freundt, E.; Welsh, S.; Baehrecke, E.H.; Lenardo, M.J. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 2004, 304(5676), 1500-1502.
Yu, L.-J.; Wu, M.-L.; Li, H.; Chen, X.-Y.; Wang, Q.; Sun, Y.; Kong, Q.-Y.; Liu, J. Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia, 2008, 10(7), 736-744.
Zainal, N.; Chang, C.-P.; Cheng, Y.-L.; Wu, Y.-W.; Anderson, R.; Wan, S.-W.; Chen, C.-L.; Ho, T.-S.; AbuBakar, S.; Lin, Y.-S. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Scientific reports, 2017, 7, 42998.
Zhang, Q.; Tang, X.; Lu, Q.Y.; Zhang, Z.F.; Brown, J.; Le, A.D. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Molecular cancer therapeutics, 2005, 4(10), 1465-1474.
Zhuang, W.; Li, B.; Long, L.; Chen, L.; Huang, Q.; Liang, Z. Induction of autophagy promotes differentiation of glioma‐initiating cells and their radiosensitivity. International journal of cancer, 2011, 129(11), 2720-2731.
Zucker, S.; Lysik, R.M.; Zarrabi, M.H.; Moll, U. Mr 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer research, 1993, 53(1), 140-146.
DOI: https://doi.org/10.7575/aiac.abcmed.v.7n.2p.44
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
2013-2023 (CC-BY) Australian International Academic Centre PTY.LTD.
Advances in Bioscience and Clinical Medicine