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INTRODUCTION

Background and Research Objectives

Homogeneous texts, as hinted by the term, are a collection 
of texts, sharing so much in common in one or more lan-
guage features, that are believed to be produced by the same 
linguistic production mechanism. To constitute a same pro-
duction mechanism, texts can be written by a single unique 
author, when the writings of Thomas Hardy are referred to; 
can be restricted to a particular genre of writing, when the 
bankruptcy statement of businesses are under discussion; can 
be concerned with a specific syntactic characteristic when 
they are collected according to the usage of passive verbs 
or BÀ-structure (把字句) in Chinese language, for instance; 
or can be topically congruent when scientific papers on the 
motion of the solar system are referred to, and can be a com-
bination of the aforesaid features and beyond. 

Homogeneity is studied from multi-perspectives. 
Literatures such as Kilgarriff (2001) concerned mainly the 
quantitative measures of homogeneity and applications in 
copra comparison. Crossley and McNamara (2011) relied 
on the notion of inter-group homogeneity, and correspond-
ingly cross-group heterogeneities, to study the development 
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L2 English composition proficiencies. Argumentative texts 
produced by school children at a given grade were treated 
as homogeneous in Feike (1996) to analyze the role of syn-
tactical component complexity and argumentative implicit-
ness in achieving and developing discourse coherence. As an 
application in stylometric analysis, the idea of homogeneity 
was used by Gurney and Gurney (1998) for indicating that 
subsets of texts typically do not provide as effective gauge 
of vocabulary usage as the entire texts do. Homogeneity also 
served a critical notion in Yang and Luk (2003) for construc-
tion of cross-lingual thesaurus, where thematic homogeneity 
was premised for the purpose of text segmentation. 

Homogeneity concerned in these literatures is mostly 
based on the text productions at the same time horizon, thus 
the profiled linguistic features of such homogeneous texts 
are supposedly uniform from one to another. On the other 
hand, homogeneous texts can be produced at different times, 
examples of which can be the texts of the speech of an assem-
bly archived from the early years of a speaker to the elderly 
years of the same speaker, or the tax codes and publications 
published by government in different years. It is natural 
query, and thus the objective of the current work, to study 
whether any systematic properties, in one or more linguistic 
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ABSTRACT

This paper takes a system dynamic approach to study homogeneous texts where the dynamics 
of the lexical richness of such texts over time are of the focal concern. It is hypothesized that the 
progress of the lexical complexity is driven by how far away this process is from the maximum 
level of complexity, while is subject to the fluctuations due to the dynamic nature of the system. 
It is shown that the lexical dynamics of homogeneous texts can be effectively modeled by a 
stochastic differential equation with proper upper bounds. The linguistic validity and the 
statistical goodness of the model are empirically tested with the texts of CGWR. Given the 
ubiquity of the diffusion phenomena in various settings of language and linguistic studies (e.g. 
language development), the findings of the current work should provide a useful methodological 
reference in comparison to classic approaches such as statistical regressions. 
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aspects, can be generalized from the series of homogeneous 
texts produced at different times. And accordingly, what are 
the mechanisms, if any, leading to such properties. 

Research Problem Formulation 
One of the most prominent quantifiable linguistic properties 
in differentiation of texts at corpus level is lexical richness, 
which refers to the level of verbal variation and sophistica-
tion represented by a given text. The measure of lexical rich-
ness can take many forms, including TTR, D, and entropy. 
TTR, defined as the ratio of the number of types divided 
by the number of tokens of a text, is a classic and widely 
known measure of lexical richness, the seminal introduction 
of which goes back to Herdan (1960). D, the arithmetic form 
of which is defined in relation to TTR as 

TTR D
N

N
D

� � �
�

�
��

�

�
��1 2 1 ,

was more recently proposed by Malvern et al. (2004), 
intended to overcome the length effect of TTR. Entropy, the 
origin of which arose from thermodynamics (see Bailyn, 

1994, e.g.), is defined by the equation E= ‑
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Pi  is the probability for the ith word to appear in an inter-
ested text. One of the apparent advantages of using entropy 
to quantify lexical richness is its universality in many other 
disciplines such as biology or information science. Indeed, 
ontologically speaking, the laws governing the evolution of 
lexical richness in language domain are fundamentally anal-
ogous to the evolution laws in other fields. But researchers 
have shown that none of these measures is perfect. For 
instance, Jarvis (2013) discussed the importance of introduc-
ing the rareness dimension in lexical richness to better reflect 
its linguistic intuition. Johansson (2008) showed arguments 
and empirical observations why D is not optimal as a lexical 
richness measure. 

In sense, all these measures are functionally related since 
all their underlying constructs are based on the frequency 
distribution of words. As demonstrated in the above, TTR 
and D are actually algebraically related to each other by an 
identity equation. This paper will show that lexical richness, 
expressed in terms of all the selected forms, of homogeneous 
texts follows distinctively similar evolving patterns. For this 
purpose, the quantitative attributes of lexical richness of 
homogeneous texts, recorded as time-dependent series, are 
formulated and analyzed with stochastic differential equa-
tions. Instead of being treated as discrete non-related texts 
created at different times, the whole corpus is thought of 
as a continuous production of a single, unique, and inte-
grated linguistic mechanism. From the dynamic complexity 
perspective, the corpus is viewed as a linguistic organism 
which continuously evolves itself to fit into the changing 
sociocultural environment (Zhang, 2015). Such organism 
is a dynamic system in itself, undergoing continuous infor-
mation exchange, feedback, adaptation, and self-organiza-
tion. The quantitative law discovered by this paper explains 

how the level of lexical richness of such a complex system 
evolves from low to high over time. 

The law is fundamentally described by a stochastic dif-
ferential equation, where the unknown variable is the level 
of lexical richness of an interested text at a prescribed time 
horizon. The equation is expressed in terms of how the level 
of lexical richness will change in relation to a small change 
of time. This change is shown to be positively proportional 
to the current level of lexical richness and the distance 
between the current level of lexical richness and the maxi-
mum level of lexical richness for the text with the given size 
and sociolinguistic constraints. The solution to the proposed 
model, when the random part is removed, verifies an empir-
ical exponential model, recently reported in Zhang (2015). 

To contrast, the currently proposed model is validated 
with the same corpus data of the CGWR as explained and 
modeled by Zhang (2015). Four types of lexical richness 
measures, namely, TTR, root TTR, D, and entropy are tested 
and compared. The estimation procedures are demonstrated 
as efficient and stable, and all the estimated parameters 
reported in the current paper are statistically significant. 
The next Section 2 describes the data and the corpus used 
for the study as well as the stochastic differential equation 
methodology. Section 3 provides the numerical results of 
implementation of the proposed approach, together with sta-
tistical analysis and model testing. Section 4 presents further 
discussions to the current results with comments of future 
directions. 

METHODOLOGY
The homogenous texts are not uncorrelated and index-invari-
ant. This paper argues, from a dynamic system standpoint, 
that they are sequentially related, continuously intercon-
nected, and asymmetric in time. Instead of being static, the 
corpus, in its own right, undergoes inception, emergence, 
development and maturing, the course of which may involve 
nonlinear changes, adoption of new entries, removal of 
superannuated elements and syntactic structures, and possi-
bly other interruptions. To model this dynamic process with 
random noises, the following quantitative framework is pro-
posed. 

Let P(t) be the degree of lexical richness of the homo-
geneous text of CGWR at time t, where t=1 be the year of 
1954, t=2 the year of 1955, and so on. Let dP be the change 
of the level of lexical richness within a time interval of dt. 
The evolution of the lexical dynamics is expressed as 

 dP t L P t dt L P t dB t� � � � � �� � � � � �� � � �� �  (1)

where L is the asymptotic limit of P(t). In another word, 
L is the upper bound of the level of lexical complexity for the 
given size of the CGWR text, which in turn may be con-
strained by the linguistic functions that the CGWR is set to 
perform. From the definition of L, P t L( ) <  for all t ≥ 0.� L is 
assumed as constant in the current study; however, the sce-
narios where L is time-dependent are possible and are dis-
cussed as a potential future direction in the concluding 
remarks. Here B t� � � is the standard Brownian motion, 
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 reflecting and modeling the randomness resulted from the 
dynamic nature of the process. Quantitatively, B(t) has the 
property dB t N t� � � �~ , ,0  i.e, , ( )dB t  follows a normal dis-
tribution with mean 0 and variance t or standard deviation 

t . For an introduction of Brownian motion with applica-
tion in the field of social science and humanity research, one 
may refer to Gardiner (2009). 

It is seen from the equation (1) that the process is com-
posed of two forces. First, consider the deterministic case 
where the volatility factor sigma is assumed 0. Then the 
increment of P(t) is positive if alpha is positive and if the 
process of P(t) starting from somewhere between zero and 
L. But due to the constraints framed by the linguistic syn-
tactic style, function, prosody, or other sociocultural metric, 
the growth of P(t) will be eventually flattened, unless there 
are emerging factors that may lead to level change which is 
not focused by the current study. Thus the farther away the 
P(t) is from L, the asymptotic upper bound of the level of 
lexical complexity, the higher rate of increase in P(t). The 
same scaling rule can be applied to the diffusion term of the 
equation (1). This is despite the fact that dB(t), by definition, 
has the same expected value for different time t, 

Now let Q t L P t� � � � � � ,� then equation (1) is equiva-
lently written as 

 dQ t Q t dt Q t dB t� � � � � � � � � � �� �  (2)

In term stochastic modeling, this differential equation is 
solvable with 
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Now the increment of Q t( )  in time interval of ( , )t t t� �  
takes the form of
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Thus to simulate the process of Q t( )  for t t tn0 1< < < , 

one can appeal to the following iterations:
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where Z Z Zn1 2, ,  are independently drawn from the 
identical standard normal distributions. Here it is assumed 
that the intervals between ti  and ti+1 for i n= 0,  are uni-
formly spaced. If not, simply replace ∆t  with t ti i� �� �1 . 
Now let
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It is well known that the mean and variance of a sample 
data whose distribution is described by a normal distribution 
can be estimated through the method of maximum likelihood 
estimation (MLE). The MLE procedure applied to the sup-
posedly normally distributed sample of xi s gives the follow-

ing estimations for the parameters in model (1):
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Now for any given � L >  max ( )Pi , the corresponding val-
ues of xi ' s, i n=1 2, , ,

are fixed. Then the parameter esti-
mates α̂  and σ̂  can be determined by the above two 
formulas. There are several statistics concerning the testing 
the goodness of fit, including Chi square test, KS test, and 
Shapiro-Wilk test. Since Chi square test can have biased 
conclusion for small sample data, the current study uses 
jointly the KS and Shapiro-Wilk tests to decide on the best 
model fitting. To remark, the maximum value of L is easy to 
comprehend since it is well known that the lexical richness 
of any text in any language is bounded. For instance, the 
maximum character based entropy of Chinese language is 
about 9.7, according to Yuan et al. (1987). And the letter 
based entropy of English language is capped at 4.03, accord-
ing to Feng (1991). For reference of entropy calculation and 
entropies of selected languages, one can refer to Levitin and 
Reingold (1994). And because of the relationships between 
TTR, D, and P, it is straightforward to find the corresponding 
domain for them. 

Empirical Results and Analysis
The data used for the current study are the CGWR corpus 
archived from the year 1954, where the first CGWR was 
launched, to 2014, excluding those years where the report 
was not delivered, namely, 1959‑1961, 1966‑1976. The 45 
CGWR texts in total constitute the corpus for the current 
study. The average number of the types of each text is about 
1166 in terms of the number of unique Chinese characters 
used, including punctuations, and the average number of 
tokens for these texts is 22041. The standard deviations for 
the types and tokens of the selected texts are about 132 and 
7994 respectively. Zhang (2015) provides a more detailed 
description of the corpus as well as a structured equation 
approach for modeling the entropic information of the cor-
pus. The following Table 1 outlines the key statistics of one 
sample set from the CGWR corpus.
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The following Table 2 reports the estimated param-
eter values for the diffusion processes of TTR, root TTR, 
entropy, and D, respectively, when they are described by the 
proposed stochastic model with an assumed upper bound. 
They are outputted from the iterative algorithms, implement-
ing the MLE procedure associated with the model as dis-
cussed in the section of Methodology using the TTR, root 
TTR, entropy, and D data of the CGWR texts. The following 
Table 2 also presents the goodness of fit tests associated to 
the respective sets of parameter estimations. As it is hypoth-
esized in the current paper that the lexical richness data fol-
lows a normal distribution model after transformations, it is 
important to examine whether the observed values, after log-
arithm transformations, are truly normal. There are a couple 
of popular statistical tests serving for this purpose, including 
Chi square test, KS test, Lilliefors test, and Shapiro-Wilk test 
(SW). Lilliefors test is more preferable for the current study 
since Chi-square test can be biased for small samples and 
KS test alone is not suitable for the normal distributions with 
unspecified means and variances. Overall, KS‑Lilliefors test 
is chosen as the benchmark test, but at the same time, the 
results of SW test are also provided for comparison. 

DISCUSSION AND CONCLUDING REMARKS

The current works attempts to identify and model the diffu-
sion phenomena empirically observed in the homogeneous 
texts of CGWRs. Lexical complexity is of pivotal interest 
to language teachers, researchers and practitioners. For lan-
guage teaching, lexical richness models may suffice a bet-
ter understanding and assessment of learners’ vocabulary 
development at different stages of learning so as to facilitate 
the designing of an optimal learning ladder (Malvern et al., 
2004; Crossley et al., 2011). For sociolinguists, lexical rich-
ness models often constitute critically important linguistic 
references for interested sociocultural query (Yang & Luk, 
2003; Zhang, 2015). The fulfillment in all such aspects 
entails a sound and preferably concise description the lexical 

complexity as observed in the homogeneously constructed 
corpus. A good portion of the existing works related to lex-
ical complexity analysis either involves only comparison 
of different lexical richness measures or falls short in terms 
of quantitative rigor and model efficiency (Lu, 2013; Diek-
mann & Mitte, 2014). 

The stochastic modeling method proposed by the cur-
rent study demonstrates the desired the clarity and robust-
ness for the task, where the model implementation as well 
as the pertaining parameter calibrations are implemented 
with computer assisted routines. Key statistical properties 
such as model significance and normality are well main-
tained as tested with the homogeneous texts of CGWR. One 
notable novelty of the current works is that it decomposes 
the process into a drift part and a random part, where the 
drift part is determined and measured by how far away the 
process is approaching the upper bound of the lexical diver-
sity of the corpus, while the random part models the amount 
of uncertainty ensued from internal and external noises of 
the process. A decomposition of the upper bound by a lin-
ear translation plus a logarithm operation results in a trans-
formed series shown to fit with a lognormal diffusion model. 

Within the framework of the lognormal model proposed 
in the current paper, one interesting and possibly intriguing 
direction deserving future study is to compare the optimal 
upper bound L reported in the current paper and the theo-
retical maximum levels of lexical richness of Chinese texts 
at given sizes, measured in terms of the four metrics used 
in the current work. One worthy attempt in this regard can 
be found in Shannon (1951), where the entropies of English 
are further analyzed in subclasses of zero‑order entropy, first 
order entropy, and so on, up to the infinite order entropy, 
and are calibrated using simulation approach. However, the 
search for the maximum level of lexical richness in terms 
of entropy or other measures of a text for any given length 
is rather a challenging problem and beyond the scope of the 
current study. As far as our knowledge goes, there do not 
exist a comprehensive result on the bounds of lexical com-
plexity of Chinese language at given sizes and given genres 
of texts. 

While the appropriateness of the approach has been con-
firmed by the extensive statistical tests in terms of the stabil-
ity of parameter estimation, robustness of the algorithm, the 
goodness of fit, and normality check, it is certainly possible 
and worthy of future study to find more fitting models with 
similar diffusion properties. Choices of such model improve-
ment, again within the domain of diffusion stochastic equa-
tions, include to allow for a broader class of functions and 
combinations of constants, time parameters, and P(t) at 
proper places in the equation (1). Such possibilities include, 
for example, to add a power to the drift coefficient or add a 
power to the diffusion coefficient. Or one may try to let the 
parameters in the equation (2) be functions of time instead 
of constants as they are in the current form. All these explo-
rations can be rewarding in terms of goodness of fit and, in 
the meantime, posing new challenges in terms of parameter 
estimation, robustness, and other issues pertaining to general 
concerns for model selection. 

Table 1. Descriptive statistics of the CGWR 1954 text, 
adapted form Zhang (2015)
Year Types Tokens TTR Entropy Maximum 

entropy
1954 1205 23168 0.052 5.8601 10.0505

Table 2. MLE based parameter estimations and normality
TTR Root TTR Entropy D

L 0.2931 10.0834 6.0238 51.9544
alpha ‑9.4904e‑04 ‑0.0909 ‑0.3712 ‑0.1168
sigma 0.0680 0.4364 0.8915 0.4936
H_ Lilliefors 0 0 0 0
KS Lilliefors 0.1052 0.1147 0.0817 0.1144
CV Lilliefors 0.1338 0.1338 0.1324 0.1338
P_ SW 0.2546 0.0152 0.8558 0.0075
SW Sig 0.289 0.046 0.856 0.023
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